NEA FEP DB Lists NAGRA Opali…2 1 International FEP List 3.1 International FEP List 3 NAGRA Opalinus Clay (OPA) FEP List, 2002 1 ONDRAF/NIRAS FEP LIST 1 SKB PSAR SFK List 1 ONDRAF/NIRAS FEP List - Near surface disposal at Dessel (cAt project)) 1.1 ON List - Surface disposal at Dessel (category A) 1 List Refere…ces FEPs List References List Weblinks List Media Export
Login

NAGRA Opalinus Clay (…002 - Version 1
References

  • NAGRA Opalinus Clay (OPA) FEP List, 2002
    1. 1 ASSESSMENT BASIS
      1. 1.1 SITE AND DISPOSAL CONCEPT
        1. 1.1.1 Waste form and packaging
        2. 1.1.2 Waste emplacement and repository
        3. 1.1.3 Host geology
        4. 1.1.4 Local and regional surface environment
        5. 1.1.5 Geographical location
        6. 1.1.6 Appropriate repository design and closure
    2. 2 COMMON FEPs
      1. 2.1 Radioactive decay
      2. 2.2 Speciation
      3. 2.3 Gaseous and volatile isotopes
    3. 3 SITING AND DESIGN
      1. 3.1 SITING
        1. 3.1.1 Repository site
        2. 3.1.2 Host rock/geology - regional character
        3. 3.1.3 Host rock/geology - at repository location
        4. 3.1.4 Surface environment
      2. 3.2 WASTE
        1. 3.2.1 Overall waste inventory
        2. 3.2.2 HLW reference inventory
        3. 3.2.3 SF reference inventory
        4. 3.2.4 ILW reference inventory
        5. 3.2.5 Alternative inventory/waste allocation assumptions
      3. 3.3 FACILITY, DESIGN & OPERATION
        1. 3.3.1 Repository layout/constraints
        2. 3.3.2 SF/HLW emplacement panels - reference design
        3. 3.3.3 SF/HLW emplacement panels - alternative design
        4. 3.3.4 ILW emplacement tunnels - reference design
        5. 3.3.5 ILW emplacement tunnels - alternative design
        6. 3.3.6 Operations/excavation/emplacement schedule
        7. 3.3.7 Closure and sealing
        8. 3.3.8 Effect of construction and operation phase
        9. 3.3.9 Retrievability
        10. 3.3.10 Monitoring (part of design basis)
    4. 4 VITRIFIED HLW
      1. 4.1 FEATURES AND CHARACTERISTICS (HLW)
        1. 4.1.1 Typical waste unit - vitrified HLW
        2. 4.1.2 Waste form (glass)
        3. 4.1.3 Stainless steel fabrication flask (incl.void space)
        4. 4.1.4 Glass cracking and surface area
        5. 4.1.5 Heat output (RN decay heat)​
      2. 4.2 ENVIRONMENTAL PROCESSES (HLW)
        1. 4.2.1 Glass recrystallisation
        2. 4.2.2 Phase separation
        3. 4.2.3 Temperature evolution​
        4. 4.2.4 Radiation damage
        5. 4.2.5 Glass alteration/dissolution
        6. 4.2.6 Rate of glass dissolution
        7. 4.2.7 Congruent dissolution
        8. 4.2.8 Selective leaching
        9. 4.2.9 Iron corrosion products / clay minerals and glass dissolution
        10. 4.2.10 Precipitation of silicates/silica gel and glass dissolution
        11. 4.2.11 Radiolysis​
        12. 4.2.12 He gas production
        13. 4.2.13 Microbial activity and effects​​
      3. 4.3 RADIONUCLIDE PROCESSES (HLW)
        1. 4.3.1 Radionuclide release from glass
        2. 4.3.2 Elemental (and RN) solubility limits
        3. 4.3.3 Coprecipitates/solid solutions (of RNs)
        4. 4.3.4 Colloids formation (RN bearing)​
        5. 4.3.5 Solute transport resistance
      4. 4.4 SPECIAL ISSUES (HLW)
        1. 4.4.1 Quality control
        2. 4.4.2 Handling accidents
        3. 4.4.3 Fuel mixing at reprocessing - variant specification
        4. 4.4.4 Nuclear criticality
    5. 5 SPENT FUEL
      1. 5.1 FEATURES AND CHARACTERISTICS (SF)
        1. 5.1.1 Typical waste unit - spent fuel
        2. 5.1.2 UO2 fuel matrix
        3. 5.1.3 Zircaloy cladding and structural elements
        4. 5.1.4 Filling material and voids
        5. 5.1.5 Heat output (RN decay heat)
        6. 5.1.6 Distribution of radionuclides in spent fuel​
        7. 5.1.7 Chemically toxic contaminants​
        8. 5.1.8 Fuel cracking and surface area​
      2. 5.2 ENVIRONMENTAL PROCESSES (SF)
        1. 5.2.1 Temperature evolution​​
        2. 5.2.2 Saturation / water content
        3. 5.2.3 Gas generation in intact canister​
          1. 5.2.3.1 Fuel matrix dissolution​
        4. 5.2.4 Zircaloy corrosion​
        5. 5.2.5 Cladding integrity​
        6. 5.2.6 Galvanic effects​
        7. 5.2.7 Alpha-radiolysis - production of oxidants and hydrogen, and recombination​
        8. 5.2.8 Beta/gamma-radiolysis effects​
        9. 5.2.9 Radiation damage​
        10. 5.2.10 Fuel alteration product formation​
        11. 5.2.11 Canister corrosion products​
          1. 5.2.11.1 Volume expansion​
        12. 5.2.12 Microbial activity and effects​
        13. 5.2.13 Zircaloy corrosion / hydrogen gas production​
        14. 5.2.14 Microbial activity and effects?
        15. 5.2.15 Zircaloy corrosion / hydrogen gas production?
      3. 5.3 RADIONUCLIDE PROCESSES (SF)
        1. 5.3.1 Radionuclide release from fuel
        2. 5.3.2 RN release from cladding and structural materials
        3. 5.3.3 Radionuclide elemental solubilities and precipitation
        4. 5.3.4 Coprecipitation of radionuclides
        5. 5.3.5 Sorption of radionuclides inside canister
        6. 5.3.6 Complexation of radionuclides
        7. 5.3.7 Formation of radionuclide-bearing colloids
        8. 5.3.8 Gaseous radionuclide release​
      4. 5.4 SPECIAL ISSUES (SF)
        1. 5.4.1 Quality control of the inventory of fuel in a canister
        2. 5.4.2 Handling accidents​
        3. 5.4.3 Damaged fuel​
        4. 5.4.4 Nuclear criticality​
        5. 5.4.5 Extreme temperature of cladding
        6. 5.4.6 Cracking of fuel pellets by He buildup
    6. 6 ILW WASTE AND PACKAGES
      1. 6.1 FEATURES AND CHARACTERISTICS (ILW)
        1. 6.1.1 ILW waste types
          1. 6.1.1.1 ILW waste groups
        2. 6.1.2 Typical waste package / emplacement containers
        3. 6.1.3 Chemically toxic components
        4. 6.1.4 Compacted waste (hulls/ends)
        5. 6.1.5 Conditioning materials
        6. 6.1.6 Waste packages​
          1. 6.1.6.1 Backfill
          2. 6.1.6.2 Voids
        7. 6.1.7 Heat output
        8. 6.1.8 Organics​
        9. 6.1.9 Extraneous materials (including microbes / biological materials)
      2. 6.2 ENVIRONMENTAL PROCESSES (ILW)
        1. 6.2.1 Resaturation of repository
          1. 6.2.1.1 Host rock creep: effect on near field (tunnel convergence)
        2. 6.2.2 Temperature evolution of near field
        3. 6.2.3 Chemical evolution - pH
        4. 6.2.4 Chemical evolution - redox​
          1. 6.2.4.1 Galvanic effects
          2. 6.2.4.2 Degradation of backfill
        5. 6.2.5 Radiolysis​​
          1. 6.2.5.1 Alpha-radiolysis
          2. 6.2.5.2 Beta/gamma-radiolysis
        6. 6.2.6 Corrosion of metallic components
          1. 6.2.6.1 Volume expansion
        7. 6.2.7 Degradation / failure of disposal containers and emplacement packages
        8. 6.2.8 Gas generation and transport
        9. 6.2.9 Effect of temperature on chemical processes
        10. 6.2.10 Microbial activity and effects
      3. 6.3 RADIONUCLIDE PROCESSES (ILW)
        1. 6.3.1 RN Transport
          1. 6.3.1.1 Diffusive transport
          2. 6.3.1.2 Flow and advective transport
        2. 6.3.2 Radionuclide release through waste form degradation
        3. 6.3.3 Instant release fraction
        4. 6.3.4 Release of volatile radionuclides over gas pathway
          1. 6.3.4.1 Gas dissolution in porewater
          2. 6.3.4.2 Sorption on cement materials
        5. 6.3.5 Sorption on and co-precipitation with corrosion products
        6. 6.3.6 Co-precipitation with calcite
          1. 6.3.6.1 Complexation
        7. 6.3.7 Colloid generation
      4. 6.4 SPECIAL ISSUES (ILW)
        1. 6.4.1 Special Issues (ILW)​
          1. 6.4.1.1 Quality control​​​
          2. 6.4.1.2 Handling accidents​​
        2. 6.4.2 Effects of co-disposal with SF/HLW
        3. 6.4.3 Nuclear criticality​​
    7. 7 SF/HLW CANISTER
      1. 7.1 FEATURES AND CHARACTERISTICS (SF/HLW canister)
        1. 7.1.1 Cast steel canister (vitrified waste)
          1. 7.1.1.1 Cast steel canister (spent fuel)
          2. 7.1.1.2 Cu/steel canister (spent fuel)
        2. 7.1.2 Canister thickness / specification (vitrified waste canister)
          1. 7.1.2.1 Canister thickness / specification (cast steel spent fuel canister)
          2. 7.1.2.2 Canister thickness / specification (Cu/steel canister)
      2. 7.2 ENVIRONMENTAL PROCESSES (Canister)
        1. 7.2.1 Canister temperature evolution (vitrified waste/spent fuel)
          1. 7.2.1.1 Canister temperature evolution (spent fuel)
        2. 7.2.2 Corrosion on wetting (steel canister - vitrified waste or spent fuel)
          1. 7.2.2.1 Corrosion on wetting (Cu/steel canister)
        3. 7.2.3 Oxic uniform corrosion (steel canister - vitrified waste / spent fuel)
          1. 7.2.3.1 Oxic uniform corrosion (Cu/steel canister - spent fuel)
        4. 7.2.4 Microbially-mediated corrosion (steel canister - vitrified waste/spent fuel)
          1. 7.2.4.1 Microbially-mediated corrosion (Cu/steel canister)
        5. 7.2.5 Anoxic corrosion (steel canister - vitrified waste/spent fuel)
          1. 7.2.5.1 Anoxic corrosion (Cu/steel canister)
        6. 7.2.6 Localised corrosion (steel canister - vitrified waste/spent fuel)
          1. 7.2.6.1 Localised corrosion (Cu/steel canister - spent fuel)
        7. 7.2.7 Total extent of corrosion (steel canister - vitrified waste/spent fuel)
          1. 7.2.7.1 Total corrosion (steel canister - spent fuel)
          2. 7.2.7.2 Total corrosion (Cu/steel canister - spent fuel)​
        8. 7.2.8 Stress corrosion cracking (steel canister - vitrified waste / spent fuel)
        9. 7.2.9 Other canister degradation processes (steel and Cu/steel canisters)
        10. 7.2.10 Radiation shielding
        11. 7.2.11 Canister breaching - reference (steel canister - vitrified waste/spent fuel)
          1. 7.2.11.1 Canister breaching - reference (Cu/steel canister - spent fuel)
        12. 7.2.12 Chemical buffering (canister corrosion products)
        13. 7.2.13 Hydrogen production (steel canister - vitrified waste / spent fuel)
          1. 7.2.13.1 Hydrogen production (Cu/steel canister - spent fuel)
        14. 7.2.14 Effect of hydrogen on corrosion
        15. 7.2.15 Corrosion products - physical effects (steel canister - vitrified waste / spent fuel)
          1. 7.2.15.1 Corrosion products - physical effects (Cu/steel canister - spent fuel)
      3. 7.3 RADIONUCLIDE PROCESSES (Canister)
        1. 7.3.1 Residual canister - crack/hole effects (vitrified waste)
        2. 7.3.2 Residual canister - crack/hole effects (spent fuel)
        3. 7.3.3 Radionuclide sorption on and co-precipitation with canister corrosion products
      4. 7.4 SPECIAL ISSUES (Canister)
        1. 7.4.1 Quality control​​​​
        2. 7.4.2 Mis-sealed canister
    8. 8 BENTONITE BUFFER
      1. 8.1 FEATURES AND CHARACTERISTICS (Bentonite buffer)
        1. 8.1.1 Bentonite emplacement and composition​
          1. 8.1.1.1 Pellets
          2. 8.1.1.2 Corrosion of structural elements in HCB blocks
        2. 8.1.2 Bentonite swelling pressure
        3. 8.1.3 Bentonite plasticity​
        4. 8.1.4 Buffer permeability​
        5. 8.1.5 Bentonite porewater chemistry
        6. 8.1.6 Gas permeability​
        7. 8.1.7 Inhomogeneities (properties and evolution)​
      2. 8.2 ENVIRONMENTAL PROCESSES (Bentonite buffer)
        1. 8.2.1 Thermal evolution​
        2. 8.2.2 Bentonite saturation​
        3. 8.2.3 Mineralogical alteration - short term​​
        4. 8.2.4 Mineralogical alteration - long term
        5. 8.2.5 Bentonite cementation​
        6. 8.2.6 Bentonite-iron interactions (canister )
          1. 8.2.6.1 Bentonite-Cu interactions
        7. 8.2.7 Microbial activity​​
        8. 8.2.8 Radiolysis
        9. 8.2.9 Bentonite erosion​
        10. 8.2.10 Interaction with cement components​
        11. 8.2.11 Gas fracturing
      3. 8.3 RADIONUCLIDE PROCESSES (Bentonite buffer)
        1. 8.3.1 Radionuclide transport through buffer
        2. 8.3.2 Radionuclide retardation
        3. 8.3.3 Elemental solubility/precipitation​
        4. 8.3.4 Colloid filtration​
        5. 8.3.5 Interaction and diffusion between canisters
      4. 8.4 SPECIAL ISSUES
        1. 8.4.1 Quality Control​
        2. 8.4.2 Organics/contamination of bentonite
        3. 8.4.3 Canister sinking​
    9. 9 ILW BACKFILL AND LINER
      1. 9.1 FEATURES AND CHARACTERISTICS (ILW backfill and liner)
        1. 9.1.1 Backfill material
        2. 9.1.2 Backfill emplacement
        3. 9.1.3 Hydraulic and gas permeability
        4. 9.1.4 Effects of initial (operating) conditions
        5. 9.1.5 Lining material
          1. 9.1.5.1 Drainage system
          2. 9.1.5.2 Seals
          3. 9.1.5.3 Cement additives
          4. 9.1.5.4 Organics
        6. 9.1.6 Rock bolts​
        7. 9.1.7 Joints and cracks in Backfill/Liner
        8. 9.1.8 Voids in Backfill/Liner
      2. 9.2 ENVIRONMENTAL PROCESSES (ILW backfill and liner)
        1. 9.2.1 Cement hydration
        2. 9.2.2 Temperature evolution
        3. 9.2.3 Mechanical strength/stability
        4. 9.2.4 Mechanical evolution and external forces
          1. 9.2.4.1 Effect of liner on rock creep
        5. 9.2.5 Saturation/hydraulic evolution
        6. 9.2.6 Chemical Degradation
        7. 9.2.7 Degradation due to reaction with sulphate
        8. 9.2.8 Degradation due to reaction with magnesium
          1. 9.2.8.1 Degradation due to other reactions
        9. 9.2.9 Volume expanding materials
        10. 9.2.10 Pore-structure heterogeneity and evolution
          1. 9.2.10.1 Compaction
        11. 9.2.11 Formation of advective paths
        12. 9.2.12 Biofilms
        13. 9.2.13 Colloid formation through backfill degradation
        14. 9.2.14 Effects of temperature gradients
        15. 9.2.15 2-phase flow
      3. 9.3 RADIONUCLIDE PROCESSES (ILW backfill and liner)
        1. 9.3.1 Diffusive transport through backfill and liner
        2. 9.3.2 Flow and advective transport through backfill and liner
        3. 9.3.3 Radionuclide sorption in backfill and liner
        4. 9.3.4 Sorption/incorporation of radionuclides on colloids and microbes
        5. 9.3.5 Solubility
        6. 9.3.6 Co-precipitation (of RNs)
        7. 9.3.7 Complexation​
      4. 9.4 SPECIAL ISSUES (ILW backfill and liner)
        1. 9.4.1 Quality control​​
        2. 9.4.2 Poor emplacement
        3. 9.4.3 Interfaces, cracks and slabbing
        4. 9.4.4 Seismic effects
    10. 10 BENTONITE-HR INTERFACE
      1. 10.1 FEATURES AND CHARACTERISTICS (Bentonite-HR interface)
        1. 10.1.1 Excavation-disturbed zone (EDZ)​
          1. 10.1.1.1 Rock bolts and mesh
        2. 10.1.2 Open contact joints
        3. 10.1.3 Effective hydraulic properties​
        4. 10.1.4 Mineralogy​
        5. 10.1.5 Groundwater composition​
        6. 10.1.6 Natural organics​
        7. 10.1.7 Microbial activity​
        8. 10.1.8 Hydraulic gradient​
        9. 10.1.9 Water flow at bentonite - host rock interface
      2. 10.2 ENVIRONMENTAL PROCESSES (Bentonite-HR interface)
        1. 10.2.1 Desaturation/resaturation of EDZ​
        2. 10.2.2 Thermal evolution​​
        3. 10.2.3 Geomechanical processes​
        4. 10.2.4 Effect of bentonite swelling on EDZ
        5. 10.2.5 Swelling of clay-minerals in EDZ​
        6. 10.2.6 Compaction of EDZ​
        7. 10.2.7 Geochemical alteration​
        8. 10.2.8 Fluid and heat fluxes by coupled processes (Onsager)​
        9. 10.2.9 Gas transport​
        10. 10.2.10 Colloid production and effects​
      3. 10.3 RADIONUCLIDE PROCESSES (Bentonite-HR interface)
        1. 10.3.1 Radionuclide migration pathways​
        2. 10.3.2 Radionuclide sorption​
        3. 10.3.3 Elemental solubility​
        4. 10.3.4 Advective/dispersive/diffusive transport​
        5. 10.3.5 Matrix diffusion​
        6. 10.3.6 Gas-induced transport​​
        7. 10.3.7 Colloid-facilitated transport​
        8. 10.3.8 Convergence-induced transport​
        9. 10.3.9 Transport by coupled processes (Onsager)​
      4. 10.4 SPECIAL ISSUES (Bentonite-HR interface)
    11. 11 CONCRETE-HR INTERFACE (ILW)
      1. 11.1 FEATURES AND CHARACTERISTICS (Concrete-HR interface)
        1. 11.1.1 Excavation-disturbed zone (EDZ)
          1. 11.1.1.1 Rock bolts
        2. 11.1.2 Effective hydraulic properties​​
        3. 11.1.3 Mineralogy​​
        4. 11.1.4 Groundwater composition​​
        5. 11.1.5 Natural organics​​
        6. 11.1.6 Microbial activity​​​
        7. 11.1.7 Hydraulic gradient​​
        8. 11.1.8 Water flow at concrete - host rock interface
      2. 11.2 ENVIRONMENTAL PROCESSES (Concrete-HR interface)
        1. 11.2.1 Desaturation/resaturation of EDZ
        2. 11.2.2 Thermal evolution
        3. 11.2.3 Geomechanical processes
        4. 11.2.4 Swelling of clay-minerals in EDZ
        5. 11.2.5 Compaction of EDZ
        6. 11.2.6 Geochemical alteration​​
        7. 11.2.7 Fluid and heat fluxes by coupled processes (Onsager)
        8. 11.2.8 Gas transport​​
        9. 11.2.9 Colloid production and effects
      3. 11.3 RADIONUCLIDE PROCESSES (Concrete-HR interface)
        1. 11.3.1 Radionuclide migration pathways​​​
        2. 11.3.2 Radionuclide sorption​​​
        3. 11.3.3 Elemental solubility​​
        4. 11.3.4 Advective/dispersive/diffusive transport​​
        5. 11.3.5 Matrix diffusion​​
        6. 11.3.6 Gas-induced transport​​​
        7. 11.3.7 Colloid-facilitated transport​​
        8. 11.3.8 Convergence-induced transport​​
        9. 11.3.9 Transport by coupled processes (Onsager)​​
      4. 11.4 SPECIAL ISSUES (Concrete-HR interface)
    12. 12 OPA HOST ROCK
      1. 12.1 FEATURES AND CHARACTERISTICS (OPA host rock)
        1. 12.1.1 Discontinuities
        2. 12.1.2 OPA matrix
        3. 12.1.3 Effective hydraulic properties​​​​
        4. 12.1.4 Mineralogy
        5. 12.1.5 Groundwater composition
        6. 12.1.6 Natural organics
        7. 12.1.7 Stress regime
        8. 12.1.8 Hydraulic gradient​​​​
        9. 12.1.9 Heterogeneity within OPA
        10. 12.1.10 Calcite veins
        11. 12.1.11 Overpressures
      2. 12.2 ENVIRONMENTAL PROCESSES (OPA host rock)
        1. 12.2.1 Thermal effects
        2. 12.2.2 Swelling of clay
        3. 12.2.3 Geochemical alteration
        4. 12.2.4 Microbial activity
        5. 12.2.5 Effects of gas on OPA
        6. 12.2.6 Groundwater flow
        7. 12.2.7 Gas transport​​​
        8. 12.2.8 Colloid transport​
        9. 12.2.9 Effect of colloids on OPA properties
        10. 12.2.10 Density-driven groundwater flow (thermal and saline)​​
        11. 12.2.11 Fluid fluxes by coupled processes (Onsager)​
      3. 12.3 RADIONUCLIDE PROCESSES (OPA host rock)
        1. 12.3.1 Radionuclide migration pathways​​​​
        2. 12.3.2 Elemental solubility​​​
        3. 12.3.3 Advective/dispersive/diffusive transport​​​
        4. 12.3.4 Matrix diffusion​​​
        5. 12.3.5 Radionuclide sorption​​​​
        6. 12.3.6 Dilution of radionuclides​​
        7. 12.3.7 Colloid-facilitated transport​​​
        8. 12.3.8 Gas-induced transport​
        9. 12.3.9 Transport by coupled processes (Onsager)​​​
      4. 12.4 SPECIAL ISSUES (OPA host rock)
        1. 12.4.1 Exploratory boreholes
        2. 12.4.2 Influx of oxidising water​
        3. 12.4.3 Intrusion of saline groundwater​
        4. 12.4.4 Chemical plume from ILW​
    13. 13 TUNNELS AND SHAFTS
      1. 13.1 FEATURES AND CHARACTERISTICS (Tunnels & shafts)
        1. 13.1.1 Access tunnels, ramp and shaft
        2. 13.1.2 Tunnel, ramp and shaft seals
        3. 13.1.3 Effective hydraulic properties
        4. 13.1.4 Hydraulic gradient
      2. 13.2 ENVIRONMENTAL PROCESSES (Tunnels & shafts)
        1. 13.2.1 Seal performance (during and after swelling)
        2. 13.2.2 Tunnel backfill performance
        3. 13.2.3 Drainage of water
        4. 13.2.4 Preferential flow of water
        5. 13.2.5 Colloid transport
        6. 13.2.6 Gas transport
        7. 13.2.7 Fluid fluxes by coupled processes (Onsager)
        8. 13.2.8 Density-driven groundwater flow (thermal and saline)
      3. 13.3 RADIONUCLIDE PROCESSES (Tunnels & shafts)
        1. 13.3.1 Radionuclide migration pathways
        2. 13.3.2 Elemental solubility
        3. 13.3.3 Advective/dispersive/diffusive transport
        4. 13.3.4 Matrix diffusion
        5. 13.3.5 Radionuclide sorption
        6. 13.3.6 Dilution of radionuclides
        7. 13.3.7 Colloid-facilitated transport
        8. 13.3.8 Gas-induced transport (of RNs)
        9. 13.3.9 Convergence-induced transport
        10. 13.3.10 Transport by coupled processes (Onsager)
      4. 13.4 SPECIAL ISSUES (Tunnels & shafts)
        1. 13.4.1 Oil or organic fluid spill
        2. 13.4.2 Influx of oxidising water
        3. 13.4.3 Intrusion of saline groundwater
        4. 13.4.4 Chemical plume from ILW
        5. 13.4.5 Alteration of backfill by liner of access tunnels
    14. 14 GEOLOGY AND HYDROGEOLOGY
      1. 14.1 GEOLOGY
        1. 14.1.1 Lithostratigraphy
        2. 14.1.2 Geological formation / history
        3. 14.1.3 Sedimentology, mineralogy etc.
          1. 14.1.3.1 Sedimentology, mineralogy etc. - overlying formations​
          2. 14.1.3.2 Sedimentology, mineralogy etc. - underlying formations
        4. 14.1.4 Regional stress regime
        5. 14.1.5 Faults, distribution and properties
        6. 14.1.6 Groundwater composition​​​
        7. 14.1.7 Natural resources
      2. 14.2 HYDROGEOLOGIC MODEL(S)
        1. 14.2.1 Hydrogeological units
        2. 14.2.2 Effective hydraulic properties​​​
        3. 14.2.3 Recharge/discharge zones
        4. 14.2.4 Hydraulic gradient​​​
        5. 14.2.5 Groundwater flowpaths
        6. 14.2.6 Density-driven groundwater flow (thermal and saline)​
      3. 14.3 RADIONUCLIDE MIGRATION (Geology & hydrology)
        1. 14.3.1 Radionuclide migration pathways​​
        2. 14.3.2 Dilution of radionuclides​
        3. 14.3.3 Sorption / retardation
    15. 15 BIOSPHERE
      1. 15.1 FEATURES AND CHARACTERISTICS (Biosphere)
        1. 15.1.1 Topography and geomorphology
        2. 15.1.2 Geosphere-biosphere interface
        3. 15.1.3 Soils
        4. 15.1.4 Aquifers
        5. 15.1.5 Surface water bodies
        6. 15.1.6 Atmosphere
        7. 15.1.7 Animals
        8. 15.1.8 Vegetation
        9. 15.1.9 Climate
        10. 15.1.10 Present-day biosphere
        11. 15.1.11 Agricultural practices
        12. 15.1.12 Natural and semi-natural environments
        13. 15.1.13 Hunter/gathering lifestyle
      2. 15.2 ENVIRONMENTAL PROCESSES (Biosphere)
        1. 15.2.1 Exfiltration to a biosphere aquifer
        2. 15.2.2 Exfiltration to surface waters
        3. 15.2.3 Water resource exploitation
        4. 15.2.4 Filtration
        5. 15.2.5 Surface water flow​
        6. 15.2.6 Groundwater flow​
        7. 15.2.7 Erosion/deposition
        8. 15.2.8 Sedimentation
        9. 15.2.9 Soil formation
        10. 15.2.10 Interface effects
        11. 15.2.11 Precipitation
        12. 15.2.12 Evapotranspiration
        13. 15.2.13 Capillary rise
        14. 15.2.14 Percolation
        15. 15.2.15 Irrigation
        16. 15.2.16 Surface run-off
        17. 15.2.17 Bioturbation
        18. 15.2.18 Suspended sediment transport
        19. 15.2.19 Earthworks (human actions, dredging, etc.)
        20. 15.2.20 Ploughing
        21. 15.2.21 Exfiltration to spring
      3. 15.3 RADIONUCLIDE MIGRATION PROCESSES (Biosphere)
        1. 15.3.1 Radionuclide accumulation in sediments
        2. 15.3.2 Radionuclide accumulation in soils
        3. 15.3.3 Radionuclide transport as solute
        4. 15.3.4 Radionuclide transport with solid material
        5. 15.3.5 Radionuclide sorption​​
        6. 15.3.6 Speciation and solubility
        7. 15.3.7 Diffusion/dispersion
        8. 15.3.8 Radionuclide volatilisation/aerosol/dust production
        9. 15.3.9 Dilution of radionuclides in surface water (aquifer, river, lake etc.)
        10. 15.3.10 Uptake by crops
        11. 15.3.11 Uptake by livestock
        12. 15.3.12 Uptake in fish
        13. 15.3.13 Foodchain equilibrium
        14. 15.3.14 Secular equilibrium of radionuclide chains
        15. 15.3.15 Removal mechanisms
        16. 15.3.16 Food and water processing
      4. 15.4 RADIONUCLIDE EXPOSURE PROCESSES (Biosphere)
        1. 15.4.1 Exposure pathways
        2. 15.4.2 Age groups
        3. 15.4.3 Dosimetry
        4. 15.4.4 Human lifestyle
        5. 15.4.5 Contaminated products (non-food)
        6. 15.4.6 Consumption of uncontaminated products
        7. 15.4.7 Radon pathways and doses
      5. 15.5 SPECIAL ISSUES (Biosphere)
        1. 15.5.1 Future biosphere conditions
        2. 15.5.2 Non-radiological effects
        3. 15.5.3 Radiological effects on non-human biota
    16. 16 GEOLOGICAL PROCESSES AND EVENTS
      1. 16.1 ENVIRONMENTAL PROCESSES (Geological P&E)
        1. 16.1.1 Regional vertical movements
        2. 16.1.2 Regional horizontal movements
        3. 16.1.3 Compaction of Opalinus Clay
        4. 16.1.4 Erosion
        5. 16.1.5 Evolution of regional stress regime
        6. 16.1.6 Neo-tectonic activity
        7. 16.1.7 Self-healing of faults
        8. 16.1.8 Seismic activity
        9. 16.1.9 Magmatic activity (volcanism and plutonism)
        10. 16.1.10 Hydrothermal activity
    17. 17 CLIMATIC PROCESSES AND EVENTS
      1. 17.1 FEATURES AND CHARACTERISTICS (Climatic P&E)
        1. 17.1.1 Present-day climatic conditions
        2. 17.1.2 Future climatic conditions
        3. 17.1.3 Glacial climate
        4. 17.1.4 Permafrost
        5. 17.1.5 Tundra climate
        6. 17.1.6 Dry climate
        7. 17.1.7 Warm seasonal humid climate
        8. 17.1.8 Warm equable humid climate
        9. 17.1.9 Seasonality of climate
      2. 17.2 ENVIRONMENTAL PROCESSES (Climatic P&E)
        1. 17.2.1 Fluvial erosion/sedimentation
        2. 17.2.2 Glacial erosion/sedimentation
        3. 17.2.3 Glacial-fluvial erosion/sedimentation
        4. 17.2.4 Ice sheet effects (loading, melt water recharge)
        5. 17.2.5 Effective moisture (recharge)
        6. 17.2.6 Greenhouse effect
    18. 18 FUTURE HUMAN ACTIONS
      1. 18.1 FUTURE HUMAN ACTIONS (Future human actions)
        1. 18.1.1 Exploratory drilling
        2. 18.1.2 Resource exploitation through boreholes
        3. 18.1.3 Mining activities
        4. 18.1.4 Geothermal exploitation
        5. 18.1.5 Deep groundwater extraction
        6. 18.1.6 Liquid waste injection
        7. 18.1.7 Human-induced climate change
        8. 18.1.8 Surface pollution (soils, rivers)
        9. 18.1.9 Groundwater pollution
        10. 18.1.10 Water management schemes
        11. 18.1.11 Intentional intrusion
        12. 18.1.12 Inadvertent intrusion
        13. 18.1.13 Repository records, markers
        14. 18.1.14 Planning restrictions
        15. 18.1.15 Abandonment of repository
No references defined.
© OECD. All rights reserved | Contact us
NEA-OECD Logo
Version: 2.1.2