[back to index] [experiment]

SINBAD ABSTRACT NEA-1553/57

TUD Spectra Measurements (FNG Bulk Shield)



1. Name of Experiment:
 ------------------
 TUD Measurement of Neutron and Photon Spectra in an ITER Bulk Shield Mock-up
 (1996)

2. Purpose and Phenomena Tested:
 ----------------------------
 Determination of neutron and photon spectra in a neutronic mock-up of the
 International Thermonuclear Experimental Reactor (ITER) shielding system
 irradiated with 14-MeV neutrons.

3. Description of Source and Experimental Configuration:
 ----------------------------------------------------
 The 14-MeV d-T Frascati Neutron Generator (FNG, [1]) was the neutron
 source. The angular dependence of the source intensity is presented in
 Figure 1. The angular dependence of the source energy distribution is
 shown in Figure 2.
 The geometry of the mock-up is outlined in Figure 3. It consists of a
 combination of slabs made from the water equivalent material Perspex
 and the stainless steel SS316 (simulating shield-blanket and vacuum
 vessel) and has a front cross-section area of 100 cm x 100 cm. The total
 thickness of the assembly is 94.26 cm including a 1 cm thick Cu layer
 in front (simulating first wall). Behind this assembly a block of Cu and
 SS316 plates was arranged (simulating the coils for the toroidal magnetic
 field of the TOKAMAK; dimensions: depth 30 cm, area 47 cm x 47 cm).
 The rear part of the assembly was surrounded with a polythene shield
 covering also the last 30 cm of the Perspex/SS316 block in order to
 reduce room-return background.
 Neutron and photon spectra were determined in the mock-up on the central
 axis of the assembly at two positions:

 Position A: Measurement behind the 6 cm thick Perspex layer inside a SS316
 slab, at a total penetration depth 41.5 cm from the front of
 the assembly (Cu 1 cm, SS316 26.08 cm, and Perspex 14.42 cm).

 Position B: Measurement in a SS316 layer at the total penetration depth
 87.6 cm from the front of the assembly (Cu 1 cm, SS316 59.82 cm,
 and Perspex 26.78 cm).

 The detectors were placed on the axis of the d-beam of the neutron generator.

4. Measurement System:
 ------------------
 A NE213 scintillator was employed for simultaneously measuring the neutron
 spectra for energies E>1 MeV and the photon spectra for energies E>0.2 MeV.
 For each registered event both the pulse-height and a pulse-shape parameter
 were recorded to distinguish between neutrons and photons.
 Pulse-height distributions from three different hydrogen-filled
 proportional detectors, one methane-filled proportional detector and a
 stilbene scintillator were used for determining the neutron flux spectra
 for energies ranging from 20 keV up to about 3.6 MeV, overlapping
 with the NE213 spectra [2-6].
 Measurement uncertainties are provided with the tabulated spectra and are
 between 2 and 10 %.

5. Description of Results and Analysis:
 -----------------------------------
 Neutron energy spectrum:
 The NE213 pulse-height spectra were unfolded by the DIFBAS code [7]
 with a response matrix developed at Physikalisch-Technische
 Bundesanstalt Braunschweig [8], to obtain spectral fluxes.
 The evaluation procedure of the proton recoil spectra from the
 proportional detectors and from the stilbene scintillator consisted in
 an iterative differentiation with inclusion of the following
 corrections: wall effect, non-linear light output function, anisotropy
 effect of stilbene, energy dependent sensitivity of the stilbene
 crystal and correction of neutron reactions on carbon resulting in
 alpha-particles. The results are shown in Figure 4. The neutron energy
 spectra represent a combination of the partial spectra obtained with
 the different detectors which were in each case corrected for material
 and size of the detector to a spherical detection volume of 2.0 cm
 radius filled with SS316.

 Photon energy spectrum:
 The pulse-height distribution from the NE213 detector for photons was
 unfolded with the DIFBAS code [7] with a response matrix calculated
 with the MCNP code. The results are shown in Figure 5. Also the photon
 energy spectra represent the spectral fluences in a SS316 sphere with
 radius of 2 cm and were normalized to one source neutron.

 Calculations:
 Examples of calculations carried out with the 3-D Monte Carlo code
 MCNP-4A [9] and the data libraries FENDL-1 [10] and FENDL-2 [11] are
 presented (Figure 6, Figure 7) [12].
 The geometry model for MCNP-4A including neutron source backing and the
 experimental environment (walls, floor, racks, ...) is given by the
 input file as well as a FORTRAN subroutine for MCNP source description.

 The input data for the 2D discrete ordinates transport calculation [13]
 are provided, including inputs for the codes TRANSX, GIP, GRTUNCL and DORT.

6. Special Features:
 ----------------
 None

7. Author/Organizer:
 ----------------
 Experiment and analysis:

 H. Freiesleben, D. Richter, K. Seidel, S. Unholzer
 Technische Universitaet Dresden
 Institut fuer Kern- und Teilchenphysik
 D-01062 Dresden
 Germany

 W. Hansen
 Technische Universitaet Dresden
 Institut fuer Energietechnik
 D-01062 Dresden
 Germany

 U. Fischer, Y. Wu
 Forschungszentrum Karlsruhe
 Institut fuer Kern- und Energietechnik
 P.O. Box 3640
 D-76021 Karlsruhe
 Germany

 M. Angelone, P. Batistoni, M. Pillon
 ENEA
 Centro Ricerche Energie Frascati
 Settore Fusione - Divisione Neutronica
 Via E. Fermi 27
 C.P. 65
 I-00044 Frascati (Rome)
 Italy

 Compiler of data for Sinbad:
 K. Seidel
 Technische Universitaet Dresden
 Institut fuer Kern- und Teilchenphysik
 D-01062 Dresden
 Germany

 Reviewer of compiled data:
 I. Kodeli, A. Trkov
 Institute Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
 E-mail: ivo.kodeli@ijs.si, andrej.trkov@ijs.si

8. Availability:
 ------------
 Unrestricted

9. References:
 ----------

 [1] M. Martone, M. Angelone, M. Pillon, The 14 MeV Frascati Neutron
 Generator, Journal of Nuclear Materials 212-215 (1994) 1661-1664;
 M. Pillon, M. Angelone, A. V. Krasilnikov, 14 MeV Neutron Spectra
 Measurements with 4% Energy Resolution using Type IIa Diamond Detector,
 Nucl. Instr. Meth. in Phys. Res. B101 (1995) 473-485.
 [2] H. Freiesleben, W. Hansen, D. Richter, K. Seidel, S. Unholzer, P.
 Batistoni, M. Pillon, M. Angelone, Investigation of Neutron and
 Gamma-ray Spectra in a Blanket Mock-up of the International
 Thermonuclear Experimental Reactor (ITER), Proc. of the 9th Intern.
 Symp. on Reactor Dosimetry, Prague, Czech Republic, 2-6 September
 1996, Editors: H. Ait Abderrahim, P. D'hondt and B. Osmera,
 World Scientific, Singapore, 1998, p. 391-396.
 [3] H. Freiesleben, W. Hansen, D. Richter, K. Seidel, S. Unholzer, U.
 Fischer, Y. Wu, M. Angelone, P. Batistoni, M. Pillon,
 Measurement and Analysis of Spectral Neutron and Photon Fluxes in an
 ITER Shield Mock-Up, Fusion Technology 1996, Proc. of the 19th. Symp.
 on Fusion Technology, Lisbon, Portugal, 16-20 September 1996,
 C. Varandas and F. Serra (editors), Elsevier Science B.V., Amsterdam,
 1997, p. 1571-1574.
 [4] H. Freiesleben, W. Hansen, D. Richter, K. Seidel, S. Unholzer, U.
 Fischer, Y. Wu, M. Angelone, P. Batistoni, M. Pillon, Measurement
 of Neutron and Gamma Spectral Fluxes in the Shielding Assembly,
 Report TU Dresden, Institut fuer Kern- und Teilchenphysik,
 TUD-IKTP/96-04, November 1996.
 [5] H. Freiesleben, W. Hansen, D. Richter, K. Seidel, S. Unholzer, U.
 Fischer, Y. Wu, M. Angelone, P. Batistoni, M. Pillon, Neutron and
 Photon Flux Spectra in a Mock-up of the ITER Shielding System,
 Fusion Engineering and Design 42 (1998), Proc. of the Fourth Intern.
 Symp. on Fusion Nuclear Technology, Tokyo, April 6-11, 1997,
 M.A. Abdou (Ed.), Elsevier Science B.V., Part C, p. 247-253.
 [6] U. Fischer, H. Freiesleben, W. Hansen, D. Richter, K. Seidel, S.
 Unholzer, Y. Wu, Test of evaluated data from libraries for fusion
 applications in an ITER shield mock-up experiment, International
 Conference on Nuclear Data for Science and Technology, Trieste,
 May 19-24, 1997, Conference Proceedings Vol. 59, p. 1215-1217,
 G. Reffo, A. Ventura and C. Grandi (Eds.), SIF, Bologna, 1997.
 [7] M. Tichy, The DIFBAS Program - Description and User's Guide, Report
 PTB-7.2- 193-1, Braunschweig 1993.
 [8] S. Guldbakke, H. Klein, A. Meister, J. Pulpan, U. Scheler, M. Tichy,
 S. Unholzer, Response Matrices of NE213 Scintillation Detectors for
 Neutrons, Reactor Dosimetry ASTM STP 1228, Ed. H. Farrar et al.,
 American Society for Testing Materials, Philadelphia, 1995, p. 310-322.
 [9] J. F. Briesmeister (Ed.), MCNP - A General Monte Carlo N-Particle
 Transport Code, Version 4A, Report, Los Alamos National Laboratory,
 LA-12625-M, November 1993.
 [10] S. Ganesan and P. K. McLaughlin, FENDL/E - evaluated nuclear data
 library of neutron interaction cross-sections and photon production
 cross-sections and photon-atom interaction cross-sections for fusion
 applications, version 1.0, Report IAEA-NDS-128, Vienna, May 1994.
 [11] M. Herman, A. B. Pashchenko, Extension and improvement of the FENDL
 library for fusion applications (FENDL-2), Report INDC(NDS)-373, IAEA
 Vienna, 1997.
 [12] U. Fischer, Y. Wu, W. Hansen, D. Richter, K. Seidel, S. Unholzer,
 Benchmark Analyses for the ITER Bulk Shield Experiment with EFF-3.0,
 -3.1 and FENDL-1, -2 Nuclear Cross-Section Data, IAEA FENDL-2
 Consultants' Meeting, October 12-14, 1998, Vienna.
 [13] I. Kodeli, Report on 1999 Activity on ND-1.2.1 (extracts),
 EFF/DOC-698, EFF Meeting, Issy-les-Moulineaux NEA-DB (Nov. 1999)
 [14] P. Batistoni, M. Angelone, U. Fischer, H. Freiesleben, W. Hansen,
 M. Pillon, L. Petrizzi, D. Richter, K. Seidel, S. Unterholzer:
 Neutronics Experiment on a Mock-up of the ITER Shielding Blanket at the
 Frascati Neutron Generator, Fusion Engineering Design 47 (1999) 25-60

10. Data and Format:
 ---------------

FILE NAME           bytes  Content
-----------------   ------ ------- 
 1 tud-abs.htm      15.446 This information file
 2 tud-exp.htm      66.231 Description of Experiment
 3 MCNP4A.inp       59.091 3-D model for MCNP-4A calculations
 4 source.for       45.178 FORTRAN subroutine for MCNP source description
 5 TRANSX.inp        1.929 Input Data for TRANSX cross-section preparation
 6 GIP.inp           2.510 Input Data for GIP cross-section mixing
 7 GRTUNCL.inp       3.888 Input Data GRTUNCL first collision source code
 8 DORT.inp          6.606 Input Data for DORT
 9 TUD-fig1.gif      5.242 Fig. 1: Angular dependence of the source (preview)
 10 TUD-fig2.gif     9.505 Fig. 2: Energy/angular dependence of the source (preview)
 11 TUD-fig3.gif    12.709 Fig. 3: Geometry of the experimental mock-up (preview)
 12 TUD-fig4.gif     9.259 Fig. 4: Neutron spectra at positions A and B (Experiment)
                           (preview)
 13 TUD-fig5.gif     8.872 Fig. 5: Gamma spectra at positions A and B (Experiment) 
                           (preview)
 14 TUD-fig6.gif    13.752 Fig. 6: Neutron spectra at positions A and B (Calculation) 
                           (preview)
 15 TUD-fig7.gif    12.692 Fig. 7: Gamma spectra at positions A and B (Calculation) 
                           (preview)
 16 TUD-fig1.tif    18.978 Fig. 1: Angular dependence of the source (high quality)
 17 TUD-fig2.tif    41.394 Fig. 2: Energy/angular dependence of the source 
                           (high quality)
 18 TUD-fig3.tif    46.568 Fig. 3: Geometry of the experimental mock-up 
                           (high quality)
 19 TUD-fig4.tif    33.966 Fig. 4: Neutron spectra at positions A and B (Experiment)
                           (high quality)
 20 TUD-fig5.tif    30.350 Fig. 5: Gamma spectra at positions A and B (Experiment)
                           (high quality)
 21 TUD-fig6.tif 1.412.874 Fig. 6: Neutron spectra at positions A and B 
                           (Calculation) (high quality)
 22 TUD-fig7.tif 1.510.931 Fig. 7: Gamma spectra at positions A and B 
                           (Calculation) (high quality)


 File TUD-exp.htm contains the following tables:
 A table with the source neutron spectrum, and 2 tables of measured neutron leakage
 spectra (high and low energy range).

 Tab. 1: Angular dependence of the source
 Tab. 2: Angular/energy dependence of the source energy distribution
 Tab. 3: Geometrical arrangement of the bulk shielding assembly
 Tab. 4: Chemical composition of stainless steel SS316
 Tab. 5: Parameters of the neutron detectors
 Tab. 6: Neutron spectrum at position A (Experiment)
 Tab. 7: Neutron spectrum at Position B (Experiment)
 Tab. 8: Photon spectrum at Position A (Experiment)
 Tab. 9: Photon spectrum at Position B (Experiment)
 Tab.10: Neutron spectra at Position A (Calculation)
 Tab.11: Neutron spectra at Position B (Calculation)
 Tab.12: Photon spectra at Position A (Calculation)
 Tab.13: Photon spectra at Position B (Calculation)

 The figures describing the geometry of the experiment and the results are
 included in GIF and TIF formats.