last modified: 19-JUN-2002 | catalog | categories | new | search |

NESC0818 CONTEMPT-4/MOD5.

CONTEMPT-4MOD3, LWR Containment Long-Term Pressure Distribution and Temperature Distribution in LOCA

top ]
1. NAME OR DESIGNATION OF PROGRAM:  CONTEMPT-4/MOD5.
top ]
2. COMPUTERS
To submit a request, click below on the link of the version you wish to order. Only liaison officers are authorised to submit online requests. Rules for requesters are available here.
Program name Package id Status Status date
CONTEMPT-4MOD5 NESC0818/05 Tested 28-JAN-1987
CONTEMPT-4MOD5 NESC0818/06 Tested 09-MAY-1989
CONTEMPT4/MOD6 NESC0818/07 Arrived 19-JUN-2002

Machines used:

Package ID Orig. computer Test computer
NESC0818/05 CDC 7600 CDC CYBER 74
NESC0818/06 IBM 3090 IBM 3083
NESC0818/07 CRAY 1
top ]
3. DESCRIPTION OF PROBLEM OR FUNCTION

CONTEMPT-4/MOD5 describes the response of multicompartment containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program can accommodate both pressurized water reactor (PWR) and boiling water reactor (BWR) containment systems. Also, both design basis accident (DBA) and degraded core type LOCA conditions can be analyzed. The program calculates the time variation of compartment pressures, temperatures, and mass and energy inventories due to intercompartment mass and energy exchange taking into account user-  supplied descriptions of compartments, intercompartment junction flow areas, LOCA source terms, and user-selected problem features. Analytical models available to describe containment systems include  models for containment fans and pumps, cooling sprays, heat conducting structures, sump drains, PWR ice condensers, and BWR pressure suppression systems. To accommodate degraded core type accidents, analytical models for hydrogen combustion within compartments and energy transfer due to gas radiation are also provided.

CONTEMPT4/MOD6 is an update of previous CONTEMPT4 versions. Improvements in CONTEMPT4/MOD6 over CONTEMPT4/MOD3 include coding of a BWR pressure suppression system model, a hydrogen/carbon monoxide  burn model, a gas radiation heat transfer model, a user specified variable junction (leakage) area as a function of pressure or time,  additional heat transfer coefficient options for heat structures, generalized initial compartment conditions for inerted containment,  an alternative containment spray model and spray carry-over capability. Also, the thermodynamic properties rountines have been extended to accomodate the higher temperature and multicomponent gas mixtures associated with combustion. In addition, reduced running time is achieved by incorporation of an optional implicit numerical  algorithm for junction flow. This makes economically feasible the analysis of very long term transients such as are encountered during degraded core accidents with hydrogen combustion. The user has the option of turning off the implicit routine through user input, if desired.
top ]
4. METHOD OF SOLUTION

Containment thermodynamic conditions of hydrogen/air/steam/liquid water mixtures are determined by using modularized equation-of-state subroutines and tabulated water properties. The numerics in the code are completely explicit except  for the predictor-corrector technique used to estimate the heat structure effects on compartment conditions, an implicit calculation of junction flow with inertia, and an optional implicit routine for  junction flow calculation approaching pressure equilibrium.
top ]
5. RESTRICTIONS ON THE COMPLEXITY OF THE PROBLEM

Maxima of -
   999 lumped parameter compartments
    99 heat conducting structures using a variety of heat transfer
       options and boundary conditions.
Intercompartment flow junctions may be calculated for either a sharp-edge orifice (single phase homogeneous or two-phase flow) or a nozzle (vapor flow only). Containment cooling spray analytical models are provided for either single or double heat exchangers.
top ]
6. TYPICAL RUNNING TIME

The long-term BWR sample problem with hydrogen burn requires approximately 9.5 minutes on a CDC CYBER175 and 4.5 hours on an IBM4331, and the ice condenser sample problem requires about 9 seconds on a CDC CYBER170/875 and 5.6 minutes on an IBM4331.
NESC0818/05
NEA-DB executed the test cases 1 and 2 of this package  on a CDC CYBER 740 computer. CPU times required were: 55 seconds (test case 1); 1346 seconds (test case 2).

NESC0818/06
NEA-DB executed the test cases included in this package on an IBM 3083 computer. Details regarding execution times for the different cases can be found in the information file distributed with the package.
top ]
7. UNUSUAL FEATURES OF THE PROGRAM

The architecture of CONTEMPT-4/MOD5 is completely modular. Dynamic storage allocation coding, optional automatic time-step control, optimal specification  of input data, and a restart capability permit flexible use of the available program features.
top ]
8. RELATED AND AUXILIARY PROGRAMS

The CONTEMP-4/MOD5 code is the most recent in the CONTEMPT series of programs originally developed at EG&G Idaho, Inc. While it does not replace CONTEMPT-LT/028 (NESC 433), CONTEMPT4/MOD5 can perform simplified boiling water reactor (BWR) containment studies. CONTEMPT4/MOD5 is an improvement to CONTEMPT4/MOD4 for ice containment analysis. STH20G generates the water properties library used by CONTEMPT4, and PLOTCT44 plots the values of variables calculated by CONTEMPT4. PLOTCT44 is not available in the IBM version.
top ]
9. STATUS
Package ID Status date Status
NESC0818/05 28-JAN-1987 Tested at NEADB
NESC0818/06 09-MAY-1989 Tested at NEADB
NESC0818/07 19-JUN-2002 Masterfiled Arrived
top ]
10. REFERENCES:
NESC0818/05, included references:
- C.C. Lin, C. Economos, J.R. Lehner, G. Maise, and K.K. Ng:
  CONTEMPT4/MOD4 A Multicompartment Containment System Analysis
  Program.
  NUREG/CR-3716  (March 1984)
- C.C. Lin:
  CONTEMPT4/MOD5 An Improvement to CONTEMPT4/MOD4 Multicompartment
  Containment System Analysis Program for Ice Containment Analysis.
  NUREG/CR-4001  (September 1984)
- M. Birgersson:
  CONTEMPT4/MOD5 Tape Description, Implementation Information and
  Replacement Section for CONTEMPT4/MOD4 Report.
  NESC Note 85-53  (March 18, 1985)
NESC0818/06, included references:
- C.C. Lin, C. Economos, J.R. Lehner, G. Maise, and K.K. Ng:
  CONTEMPT4/MOD4 A Multicompartment Containment System Analysis
  Program.
  NUREG/CR-3716  (March 1984)
- C.C. Lin:
  CONTEMPT4/MOD5 An Improvement to CONTEMPT4/MOD4 Multicompartment
  Containment System Analysis Program for Ice Containment Analysis.
  NUREG/CR-4001  (September 1984)
- M. Birgersson:
  CONTEMPT4/MOD5 IBM Version Tape Description, Implementation
  Information and Replacement Section for NUREG/CR-3716
  Reference Report.
  NESC Note 87-74  (May 31, 1987)
NESC0818/07, included references:
- C.C. Lin, C. Economos, J.R. Lehner, G. Maise:
  CONTEMPT4/MOD6 - A Multicompartment Containment System Analysis
  Program
  NUREG/CR-4547 (BNL-NUREG-51966 (March 1986).
- M. Birgersson:
  CONTEMPT4/MOD6 CRAY Version Tape Description, Implementation
  Information
  NESC Note 90-38 (January 19, 1990).
top ]
11. MACHINE REQUIREMENTS

60,000 (octal) words of small core memory (SCM) and 220,000 (octal) words of large core memory (LCM) are required on a CDC CYBER176. 160,000 (octal) words of SCM are required on a CDC CYBER170/875. CalComp or FR80 plotting devices are needed for graphical output. 1150K bytes of memory are required on an IBM4331.
NESC0818/05
Main storage requirements on CDC CYBER 740 are 227,000  (octal) words (CM).
top ]
12. PROGRAMMING LANGUAGE(S) USED
Package ID Computer language
NESC0818/05 FORTRAN+COMPASS
NESC0818/06 FORTRAN+ASSEMBLER
NESC0818/07 FORTRAN+COMPASS
top ]
13. OPERATING SYSTEM UNDER WHICH PROGRAM IS EXECUTED

SCOPE 2.1 (CDC 7600), NOS/BE (CDC CYBER 176) NOS 2.2 (CDC CYBER175,170/875), MVS (IBM3090), VM/CMS (IBM4331).
NESC0818/05
NOS 1.4-531 (CDC CYBER 740).

NESC0818/06
MVS/XA (IBM 3083).
top ]
14. OTHER PROGRAMMING OR OPERATING INFORMATION OR RESTRICTIONS

CONTEMPT4 cannot be compiled successfully using the FTN5 compiler. CONTEMPT4, STH20G, and PLOTCT44 will not load with the NOS1.5-564 or 587 loader; NESC used the NOS1.5-552 loader on a CDC CYBER175.
top ]
15. NAME AND ESTABLISHMENT OF AUTHOR

  7600   C.C. Lin, C. Economos, J.R. Lehner, G. Maise,
         and K.K. Ng
         Department of Nuclear Energy
         Brookhaven National Laboratory
         Upton, New York 11973, U. S. A.

  3090   S.M. Mirsky
         Baltimore Gas and Electric
top ]
16. MATERIAL AVAILABLE
NESC0818/07
test-case data   mag tapeCONTEMPT4 Update Source                    DATTP
source program   mag tapeEG&G Environmental Routines UPDATE Source  SRCTP
source program   mag tapeHEADER Routines UPDATE Source              SRCTP
test-case data   mag tapeGerman Stand. Probl. on D-15, BL-MD S.P.   DATTP
test-case data   mag tapeCVTR Test 3 Sample Problem Input           DATTP
test-case data   mag tapeHDR V-21 Sample Problem Input              DATTP
test-case data   mag tapeTypical PWR Application Input              DATTP
test-case data   mag tapeIce Condenser (modified) S.P. Input        DATTP
test-case data   mag tapeBWR Mark III SBA Case H2-Burn S.P. Input   DATTP
test-case output mag tapeGerman Stand. Probl. on D-15, BL-MD S.P.   OUTTP
test-case output mag tapeCVTR Test 3 Sample Problem Output          OUTTP
test-case output mag tapeHDR V-21 Sample Problem Output             OUTTP
test-case output mag tapeTypical PWR Application Output             OUTTP
test-case output mag tapeIce Condenser (modified) S.P. Output       OUTTP
test-case output mag tapeBWR Mark III SBA Case H2-Burn S.P. Output  OUTTP
test-case data   mag tapeSample Control Information                 DATTP
report                   NUREG/CR-4547 BNL-NUREG-51966 (March 1986) REPPT
prog. note               NESC Note 90-38 (January 19, 1990)         NOTPT
NESC0818/05
File name File description Records
NESC0818_05.001 Information file 67
NESC0818_05.002 Control information 433
NESC0818_05.003 CONTEMPT4 source 27960
NESC0818_05.004 EG&G Enviromental Routines source 30484
NESC0818_05.005 STH20G source 333
NESC0818_05.006 CONTEMPT4 segload directives 13
NESC0818_05.007 STH20G segload directives 10
NESC0818_05.008 STH20G sample problem 14
NESC0818_05.009 CONTEMPT4 Hydrogen Burn sample problem 408
NESC0818_05.010 CONTEMPT4 Ice Condenser sample problem 194
NESC0818_05.011 CONTEMPT4 UPDATE source 27616
NESC0818_05.012 EG&G Enviromental Routines UPDATE source 33830
NESC0818_05.013 CONTEMPT4 Hydrogen Burn s.p. output 10374
NESC0818_05.014 CONTEMPT4 Ice Condenser s.p. output 4313
NESC0818_05.015 PLOTCT44 source 2286
NESC0818_05.016 PLOTCT44 UPDATE source 2286
NESC0818_05.017 PLOTCT44 segload directives 5
NESC0818/06
File name File description Records
NESC0818_06.001 Information file 164
NESC0818_06.002 Environmental routine source (Assembler) 3766
NESC0818_06.003 Environmental routine source (Fortran) 3277
NESC0818_06.004 CONTEMPT4/MOD5 source (Fortran) 31338
NESC0818_06.005 ICFLOW source (Fortran) 811
NESC0818_06.006 STH2OG source (Fortran) 38
NESC0818_06.007 STH2OG data, Formatted steam table 1908
NESC0818_06.008 Hydrogen burn sample problem input 414
NESC0818_06.009 Ice condenser sample problem input 199
NESC0818_06.010 JCL supplied from the author 179
NESC0818_06.011 JCL used at Data Bank 49
NESC0818_06.012 JCL macro definitions 41
NESC0818_06.013 Output of Hydrogen burn sample problem 21615
NESC0818_06.014 Output of Ice condenser sample problem 15597
top ]
17. CATEGORIES
  • G. Radiological Safety, Hazard and Accident Analysis

Keywords: BWR reactors, accidents, containment, energy transfer, ice condensers, mass transfer, pressure, pwr reactors, reactor safety, temperature distribution.