last modified: 22-APR-2009 | catalog | categories | new | search |

NEA-1845 MURE.

MURE, MCNP Utility for Reactor Evolution: couples Monte-Carlo transport with fuel burnup calculations

top ]
1. NAME OR DESIGNATION OF PROGRAM:  MURE
top ]
2. COMPUTERS
To submit a request, click below on the link of the version you wish to order. Only liaison officers are authorised to submit online requests. Rules for requesters are available here.
Program name Package id Status Status date
MURE NEA-1845/01 Arrived 22-APR-2009

Machines used:

Package ID Orig. computer Test computer
NEA-1845/01 Linux-based PC
top ]
3. DESCRIPTION OF PROGRAM OR FUNCTION

The main aim of the MURE package is to perform nuclear reactor time-evolution using successive calls to the widely-used particle transport code MCNP.
  
MURE is an Object-Oriented package and therefore users are free to interact with it in their own way or to use the evolution controls already developed.
  
MURE also provides coupling of the neutronics (with or without fuel burn-up) and thermal-hydraulics using a sub-channel 3D code, COBRA-EN.
  
A graphical interface is provided to visualize and post-treat the results, including radiotoxicity calculations, waste heats, etc.
  
An interface to NJOY to generate cross-section in the MCNP ACE format (endf2ace) is also provided in the MURE package.
  
See http://lpsc.in2p3.fr/gpr/MURE/html/MURE/MURE.html for more details.
top ]
4. METHODS

MURE provides an interface to MCNP to build complex geometries using Object-Oriented programming and/or the ability to calculate nuclear fuel depletion.
  
Neutron transport is performed by MCNP/MCNPX and depletion is calculated using numerical integration via the Runge-Kutta algorithm. Successive MCNP runs and Bateman equation resolutions are performed until the end of the evolution time.
  
Interactions during the evolution calculation allow the user to impose conditions such as power levels, constant k_eff, etc. It is easy for the user to implement their own evolution control owing to the Object-Oriented programming and inheritance mechanism.
  
Standard evolutions evaluate one-group constant reaction rates between 2 MCNP runs for solving the Bateman equations at each step. However, Predictor-Corrector methods can also be used, as well as "quasi-multi group" flux where reaction rates are calculated outside of MCNP from flux tallies for each cell with a highly discretized energy binning. Reaction rates in this method are calculated after each MCNP run using the same ACE cross-section files that were used in the neutron transport; the advantage of this method is a large CPU time gain in MCNP (at least a factor 30).
top ]
5. RESTRICTIONS ON THE COMPLEXITY OF THE PROBLEM

For high energy physics (above 20 MeV), very little testing has been performed. To date, MURE has only been used with neutron transport (electrons, photons, protons have not been transported and fuel evolution involving reactions induced by these particles is not performed).
top ]
6. TYPICAL RUNNING TIME

On a 2.4 GHz Pentium 4,
- The compilation of MURE takes about 2 minutes.
- Run times depends mainly on MCNP run times ; for the evolving examples provided and using "quasi-multi group" approach, the typical run time is about 10 minutes.
top ]
8. RELATED OR AUXILIARY PROGRAMS

Auxiliary programs included in the distribution:
- MureGui: GUI to visualize and post-treat MURE evolution results
- ENDF2ACE: Interface to NJOY to prepare ACE format files for MCNP from ENDF cross-section library.
- ExtractTree/ExtractXsdir: build the BaseSummary.dat file, needed for MURE evolution
- GenerateFPYield: generate binary fission product yield file from an ENDF fission product yield file
-------
Not included in the distribution package:
- MCNP or MCNPX (CCC-0740)
- COBRA-EN (NEA-1614)
- NJOY99 (PSR-0480)
top ]
9. STATUS
Package ID Status date Status
NEA-1845/01 22-APR-2009 Masterfiled Arrived
top ]
10. REFERENCES

- Meplan O., Nuttin A., Laulan O., David S., Michel-Sendis F. et al.:
MURE: MCNP Utility for Reactor Evolution - Description of the methods, first applications and results, Proceedings of the ENC 2005 (CD-Rom) - ENC 2005 - European Nuclear Conference. Nuclear Power for the XXIst Century : From basic research to high-tech industry, France
- Michel-Sendis F., Meplan O., David S., Nuttin A., Bidaud A. et al.:
Plutonium incineration and uranium 233 production in thorium fuelled light water reactors, GLOBAL 2005 Proceedings (CD-Rom) - GLOBAL 2005: International Conference on Nuclear Energy Systems for Future Generation and Global Sustainability, Japan
NEA-1845/01, included references:
- O. Meplan (LPSC, Grenoble and IPN Orsay), J. Wilson (IPN Orsay), A. Bidaud
(LPSC, Grenoble), S. David (IPN Orsay), N. Capellan (IPN Orsay), Frantisek
Havluj (UJV, C.R), Radim Vocka (UJV, C.R):
MURE, MCNP Utility for Reactor Evolution - User Guide - Version 1.0, Report:
LPSC 0912, Report: IPNO-09-01, January 2009 (PDF & HTML)
- FAQ on MURE package (PDF & HTML)
- L. Perot (IPNOrsay), O. Meplan (LPSC Grenoble):
ENDF2ACEUserGuide, January 19, 2009 (PDF)
- MURE Project Documentation, 5 February 2009 (HTML)
top ]
11. HARDWARE REQUIREMENTS

MURE runs on LINUX operating system and probably on any UNIX computer. Expanding and compiling the code system requires 120 MB hard disk space.
top ]
12. PROGRAMMING LANGUAGE(S) USED
Package ID Computer language
NEA-1845/01 C++
top ]
13. SOFTWARE REQUIREMENTS

- a C++ compiler (such as g++ of GCC)
- MCNP or MCNPX (CCC-0740)
- If coupling with thermics and thermal-hydraulics is required: COBRA-EN (NEA-1614)
- For Graphical User Interface (GUI): ROOT (http://root.cern.ch)
- For radiotoxicity post processing calculations: LAPACK library (available for any LINUX distribution or at http://www.netlib.org/lapack)
- If users need to use ENDF2ACE: NJOY is required (NJOY99, PSR-0480)
top ]
15. NAME AND ESTABLISHMENT OF AUTHORS

Developed by:
MURE team,
Laboratoire de Physique Subatomique et de Cosmologie de Grenoble, France
and
Institut de Physique Nucleaire d'Orsay, France.
top ]
16. MATERIAL AVAILABLE
NEA-1845/01
/documentation/ Documentation in PDF and HTML
/gui/ GUI scripts
/source/ Source code
/examples/ Exmaples, test cases input and output
/lib/ empty, to be filled by user
/thermal_data/ contains mox, sodium, uox and water property data
/data/ Miscellaneous data
/utils/ contains ENDF2ACE with manual, ExamTree, TclSCripts, fp and datadir
top ]
17. CATEGORIES
  • D. Depletion, Fuel Management, Cost Analysis, and Power Plant Economics

Keywords: depletion, fission products, inventories, monte carlo method, neutron.