![]() |
|
Back
80-Hg-202 JNDC EVAL-SEP97 K.SHIBATA, T.FUKAHORI, S.CHIBA,+ JNST 34, 1171 (1997) DIST-JAN09 20090105 ----JEFF-311 MATERIAL 8043 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT *************************** JEFF-3.1.1 ************************* ** ** ** Original data taken from: JEFF-3.1 ** ** ** ****************************************************************** ***************************** JEFF-3.1 ************************* ** ** ** Original data taken from: JENDL-3.3 ** ** ** ****************************************************************** HISTORY 97-09 Evaluation was performed for JENDL-3.3. 97-10 Compiled by T.Fukahori (jaeri). 99-04 Comments were added by T.Fukahori 01-07 Modified by K.Shibata for JENDL-3.3. (3,251) deleted. (4,2) transformation matrix deleted. (5,16-91) INT=22. mf=1 General information mt=451 Descriptive data and dictionary mf=2 Resonance parameters mt=151 Resolved resonances Resonance region = 1.0e-5 eV to 4.52 keV Parameters for the multilevel Breit-Wigner formula were adopted from the compilation by Mughabghab+ /1/. R=9.5 fm was selected to reproduce the thermal elastic scattering cross section of natural Mercury measured by Hibdon+ /2/. calculated 2200-m/s cross sections and res. integrals. 2200-m/s res. integ. elastic 14.57 b - capture 4.95 b 3.19 b total 19.52 b mf=3 Neutron cross sections mt=1 Total Below 4.52 keV , no background cross section was given. Spherical optical model calculation was made by casthy code /3/ above 4.52 keV. Modified Walter-Guss potential parameters /4,5/ were used. mt=2 Elastic scattering Given as total minus nonelastic cross sections. mt=16,17,22,28,103,104,107 (n,2n),(n,3n),(n,n'a),(n,n'p),(n,p),(n,d),(n,a) Calculated by scincros-ii /4/ with the following parameters. optical potential parameters neutron : modified Walter-Guss /4,5/ proton : combined Perey /6/ and Walter-Guss alpha : Lemos /7/ modified by Arthur-Young /8/ deuteron: Lohr-Haeberli /9/ level density parameters nuclei a(1/MeV) pair(MeV) t(MeV) Ex(MeV) Ec(MeV) Hg-194 21.5 2.00 0.42 3.66 2.89 Hg-195 21.0 0.87 0.59 5.45 0.89 Hg-196 20.5 1.71 0.49 4.36 2.50 Hg-197 20.0 0.87 0.63 6.00 1.03 Hg-198 19.5 1.66 0.63 6.45 1.91 Hg-199 18.0 0.87 0.70 6.48 0.75 Hg-200 17.0 1.69 0.75 7.81 2.19 Hg-201 16.0 0.87 0.79 7.22 0.77 Hg-202 15.0 1.58 0.84 8.35 1.79 Hg-203 14.5 0.87 0.83 7.02 0.58 Hg-204 14.0 1.28 0.82 6.88 2.81 Hg-205 13.5 0.87 0.84 6.59 1.86 Au-195 21.0 0.84 0.57 5.05 1.11 Au-196 20.5 0.00 0.43 1.63 0.60 Au-197 19.6 0.79 0.58 4.70 1.26 Au-198 19.1 0.00 0.62 4.52 0.57 Au-199 18.0 0.82 0.65 5.52 1.16 Au-200 17.0 0.00 0.64 4.07 0.47 Au-201 15.5 0.71 0.73 5.53 0.90 Au-202 15.0 0.00 0.77 5.40 0.00 Au-203 14.0 0.41 0.82 6.01 0.00 Au-204 13.0 0.00 0.87 5.84 0.00 Pt-192 23.2 1.84 0.58 7.15 1.44 Pt-193 22.5 0.71 0.58 5.64 0.52 Pt-194 21.0 1.55 0.59 6.28 1.67 Pt-195 21.0 0.71 0.61 5.69 0.66 Pt-196 20.0 1.50 0.58 5.63 1.97 Pt-197 18.9 0.71 0.67 6.11 0.60 Pt-198 18.7 1.53 0.65 6.53 1.52 Pt-199 18.5 0.71 0.67 6.09 0.51 Pt-200 18.0 1.42 0.66 6.29 0.00 Pt-201 17.5 0.71 0.68 5.66 0.00 mt=4,51-69,91 Inelastic scattering The casthy and sincros-ii calculations were adopted. The direct-process component was considered by the DWBA theory. Deformation parameters were taken from ref. /10/ and listed in the table below for adopted levels. The level scheme is given as follows: no. energy(MeV) spin-parity deformation-parameter g.s. 0.0 0 + 1. 0.4396 2 + L=2, beta=0.088 2. 0.9597 2 + L=2, beta=0.012 3. 1.1197 4 + L=4, beta=0.038 4. 1.1822 2 + 5. 1.3116 4 + L=4, beta=0.040 6. 1.3479 1 + 7. 1.3898 1 + 8. 1.4570 1 + 9. 1.5088 2 + 10. 1.5240 1 + 11. 1.5621 3 + 12. 1.5647 0 + 13. 1.5756 2 + 14. 1.6432 0 + L=0, beta=0.009 15. 1.6782 1 + 16. 1.7248 2 + 17. 1.7459 1 + 18. 1.7885 2 + 19. 1.7943 2 + Continuum levels were assumed above 1.794 MeV. Following levels were included in the continuum. 1.9654 L=5, beta=0.033 2.3570 L=3, beta=0.031 2.7090 L=3, beta=0.090 3.0590 L=5, beta=0.021 3.1660 L=3, beta=0.024 mt=102 Capture Below 4.52 keV, no background cross section was given. The casthy calculation was adopted above 4.52 keV. mf=4 Angular distributions of secondary neutrons mt=2,51-69 Optical and statistical-model calculations were adopted. The DWBA calculations were added. mt=16,17,22,28,91 Calculated with sincros-ii. mf=5 Energy spectrum of secondary neutron mt=16,17,22,28,91 Calculated with sincros-ii. mf=12 Photon multiplicities and transition probability arrays mt=16,17,22,28,51-69,91,102,103,104,107 Multiplicities were calculated with casthy and sincros-ii. mf=14 Photon angular distributions mt=16,17,22,28,51-69,91,102,103,104,107 Assumed to be isotropic. mf=15 Photon energy spectra mt=16,17,22,28,91,102,103,104,107 Calculated with casthy and sincros-ii. References 1) Mughabghab S.F. et al.: "Neutron Cross Sections", Vol.1, Part B, Academic Press (1984). 2) Hibdon C.T. et al.: Phys. Rev., 82, 560 (1951). 3) Igarasi S. and Fukahori T.: JAERI-1321 (1991). 4) Yamamuro N.: JAERI-M 90-006 (1990). 5) Walter R.L. and Guss P.P.: Proc. Int. Conf. on Nucl. Data for Basic and Applied Sci., Santa Fe, May 13-17, 1985, p.1079 (1986). 6) Perey F.G.: Phys. Rev., 131, 745 (1963). 7) Lemos O.F.: Orsay Rep., Ser. A. No. 136 (1972). 8) Arthur E.D. and Young P.G.: LA-8626-MS (1980). 9) Lohr J.M. and Haeberli W.: Nucl. Phys., A232, 381 (1974). 10) Hogenbirk A. et al: Nucl. Phys., A524, 251 (1991).Back |