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Foreword 

Under the guidance of the Nuclear Energy Agency (NEA) Nuclear Science Committee 

(NSC), the Working Party on Scientific Issues and Uncertainty Analysis of Reactor 

Systems (WPRS) studies the reactor physics, fuel performance, and radiation transport and 

shielding in present and future nuclear power systems. In 2022, the WPRS Expert Group 

on Reactor Systems Multi-Physics (EGMUP) mandated a new Task Force on Artificial 

Intelligence (AI) and Machine Learning (ML) for Scientific Computing in Nuclear 

Engineering to develop a benchmark that will provide guidelines and exercises to help 

participants to develop and evaluate the performance of their artificial intelligence and 

machine learning methods. The benchmark activity of this Task Force is structured into 

two phases: 

• Phase 1: Regression, Classification and Verification, Validation and Uncertainty 

Quantification (VVUQ); Dimensionality Reduction and Anomaly Detection. 

• Phase 2: Generative Deep Learning and Data Augmentation; Design Optimisation. 

This document provides the specifications of the critical heat flux exercise, which is part 

of the Phase 1 activities. 
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Executive summary 

Recent performance breakthroughs in artificial intelligence (AI) and machine learning 

(ML), including advances in deep learning (DL) and the availability of powerful, easy-to-

use ML toolboxes, have led to unprecedented interest in AI and ML among nuclear 

engineers. Nonetheless, the extensive capabilities of AI and ML remain largely untapped 

within the realm of scientific computing in nuclear engineering. One formidable hurdle in 

harnessing their power is the frequent mismatch between existing ML methodologies and 

the specific demands of nuclear engineering applications and their extensive validation 

requirements. To enable more trustworthy applications in high-consequence systems like 

nuclear reactors that are subject to nuclear safety regulations, the ML practitioners have to 

address several critical issues, including the verification, validation and uncertainty 

quantification (VVUQ) of AI and ML, data scarcity, scaling-induced uncertainty, and lack 

of physics in black-box ML models.  

Under the guidance of the NEA Nuclear Science Committee (NSC), the Working Party on 

Scientific Issues and Uncertainty Analysis of Reactor Systems (WPRS) studies the reactor 

physics, fuel performance, and radiation transport and shielding in present and future 

nuclear power systems. In line with the NEA strategic target to contribute to building a 

solid scientific and technical basis for the development of future generation nuclear systems 

and the deployment of innovations, the WPRS Expert Group on Reactor Systems Multi-

Physics (EGMUP) mandated in 2022 a new Task Force on Artificial Intelligence and 

Machine Learning for Scientific Computing in Nuclear Engineering to develop and execute 

benchmarks for AI/ML applications with the following goals:  

● to build communities of practice dedicated to the exchange of know-how in the 

field of AI and ML applications;  

● to support the development and performance assessment of ML methods; 

● to leverage the insights gained from the benchmarks to distil lessons learnt and to 

provide guidelines for future AI & ML applications in scientific computing in 

nuclear engineering.   

The benchmark activity of the EGMUP Task Force has been structured into two phases: 

● Phase 1: Regression, Classification and VVUQ; Dimensionality Reduction and 

Anomaly Detection; 

● Phase 2: Generative Deep Learning and Data Augmentation; Design Optimisation. 

This document provides the specifications of an exercise related to critical heat flux (CHF) 

that is part of the Phase 1 activities.  

In a boiling system, the CHF corresponds to the limit beyond which wall heat transfer 

decreases significantly. The phenomenon can also be referred to as critical boiling 

transition (Kaizer et al., March 2019[1]), boiling crisis and (depending on operating 

conditions) departure from nucleate boiling (DNB), dryout, etc. In a heat transfer controlled 

system, such as a nuclear reactor core, CHF can result in a significant wall temperature 

increase, leading to accelerated wall oxidation and potentially fuel rod failure. While 

constituting an important design limit criterion for the safe operation of reactors, CHF is 

very challenging to predict accurately due to the complexities of the involved local 

phenomena. Additionally, large uncertainties are associated with the CHF prediction 

restricting the reactor design and operation flexibility.  
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Current CHF models are mainly based on empirical correlations developed and validated 

for a specific application case domain. Through this benchmark, improvements in the CHF 

modelling are sought using AI & ML methods directly leveraging the available 

experimental databases. The improved modelling can lead to a better understanding of the 

safety margins and provide new opportunities for design or operational optimisations. 

Recently, a database used to develop the widely known 2006 Groeneveld CHF lookup table 

(LUT) was published in digital form by the US Nuclear Regulatory Commission (NRC) 

(Groeneveld, January, 2019[2]). This database (hereafter referred as the “NRC CHF 

database”), consisting of nearly 25 000 data points, is the largest known CHF dataset 

publicly available worldwide with measurements in vertical water-cooled tubes collected 

over a span of 60 years. Thus, the NRC CHF database provides the opportunity to further 

develop advanced data-driven regression methods to enable faster and more accurate CHF 

predictions.  

The scope of this report is limited to the specification of Phase 1 of the CHF benchmark 

exercise organised as part of the Benchmark on Artificial Intelligence and Machine 

Learning (AI/ML) for Scientific Computing in Nuclear Engineering (NEA, 2023[3]) by the 

NEA NSC/WPRS/EGMUP Task Force on AI/ML.  

In Phase 1 of the CHF exercise, the proposed tasks will leverage the NRC CHF database 

to train data-driven ML models that could improve the LUT prediction performance. The 

potential of ML has been demonstrated in an early ML regression analysis of the NRC 

CHF database using various ML algorithms (Grosfilley, 2022[4]) (Grosfilley et al., 2023[5]). 

The benchmark exercises specified in this report define four main AI & ML tasks based on 

the NRC CHF database. Task 1 is optional and consists of a dimensionality analysis, where 

the participants are asked to perform feature selection and extraction for their ML models. 

In Task 2, ML CHF regression algorithms are developed and assessed, including model 

optimisation, training/validation and testing. In Task 3, the participants evaluate their 

trained models by computing specific metrics and by ensuring that overfitting does not 

occur. Finally, in Task 4 CHF predictions on a blind dataset not seen during the 

training/validation/testing are requested.  

The target audience of this report are the participants of the corresponding benchmark 

activity executed by the EGMUP Task Force on Artificial Intelligence and Machine 

Learning for Scientific Computing in Nuclear Engineering. Furthermore, the report can 

serve scientific computing experts as an example of how to benchmark AI/ML applications 

in nuclear engineering. Even after termination of the benchmark activities by the EGMUP 

Task Force, the benchmark specifications can serve as input for subsequent benchmark 

activities addressing future algorithms and exercises. This report is therefore intended to 

become part of a data package including the results of the benchmark executed by the 

EGMUP Task Force and linked to the NRC CHF database to serve as valuable input for 

future benchmark studies. 
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1. Introduction 

In a boiling system, the critical heat flux (CHF) corresponds to the limit beyond which wall 

heat transfer decreases significantly. The phenomenon can also be referred to as critical 

boiling transition (Kaizer et al., March 2019[1]), boiling crisis and (depending on operating 

conditions) departure from nucleate boiling (DNB), dryout, etc. In a heat transfer controlled 

system, such as a nuclear reactor core, CHF can result in a significant wall temperature 

increase, leading to accelerated wall oxidation and potentially to heater (e.g. fuel rod) 

failure. While constituting an important design limit criterion for the safe operation of 

reactors, CHF is challenging to predict accurately due to the complexities of the involved 

phenomena, which are not well understood up to date. CHF thus remains a potential source 

of uncertainties and improvements in the comprehension of CHF dependencies and 

modelling can directly impact the operational flexibility and safety of nuclear reactors. 

The history of CHF predictive model development for convective boiling systems is tightly 

coupled to the development of civil nuclear power systems. The first measurements date 

back to 1949 and rapidly expanded in the 1960s and 1970s (Groeneveld, January, 2019[2]). 

Measurement uncertainties in such experiments can, however, be significant. CHF is 

known to mainly depend on flow conditions and geometrical parameters. Initial attempts 

to develop predictive models were based on empirical correlations. As interest in CHF 

prediction increased, various analytical models (including mechanistic models) were 

proposed that could, to some extent, predict CHF across various flow regimes and 

conditions. However, the level of prediction accuracy desired for reactor design and safety 

analyses still requires the use of empirical CHF prediction models developed from design-

specific data measured over relevant, but limited, operational ranges. 

The most successful attempts to correlate CHF over a large parameter space have been 

performed using lookup tables, for which the applicability remains, however, limited. The 

best-known example of this approach has been documented in (Groeneveld et al., Sept. 

2007[6]) and is known as the 2006 Groeneveld CHF lookup table (LUT), applicable to an  

8 mm (normalised) uniformly heated vertical diameter pipe. Available correction factors 

can be used to adjust the predictions to various other designs (other diameters, non-uniform 

power, rod bundle, etc.). The CHF LUT can be considered a data-driven approach using 

three input parameters (pressure, mass flux and local thermodynamic equilibrium quality) 

which has the following advantages: 

• reasonable accuracy; 

• wide range of operating conditions, thus limiting the need for extrapolation; 

• the ability to improve predictions by gathering more data. 

However, there are still some drawbacks due to data scarcity in some parts of the input 

domain and incapability to capture complex behaviour stemming from second-order 

parameters. This results in a relatively large root mean square error (RMSE) of nearly 39% 

when predicting CHF using constant local conditions (Groeneveld et al., Sept. 2007[6]), 

making the CHF LUT approach essentially insufficient for many applications. 

The CHF database used to develop the 2006 Groeneveld CHF LUT was recently published 

in digital form by the US Nuclear Regulatory Commission (NRC) (Groeneveld, January, 

2019[2]). This database (hereafter referred as the “NRC CHF database”), consisting of 

nearly 25 000 data points, is the largest known CHF dataset publicly available worldwide 

with measurements in vertical water-cooled tubes collected over a span of 60 years. Thus, 



12  NEA/WKP(2023)1 

  

  

the NRC CHF database provides the opportunity to further develop advanced data-driven 

regression methods to enable faster and more accurate CHF predictions. 

The scope of this document is limited to the description of Phase 1 of the CHF benchmark 

exercise organised as part of the Benchmark on Artificial Intelligence and Machine 

Learning (AI/ML) for Scientific Computing in Nuclear Engineering (NEA, 2023[3]) by the 

NEA NSC/WPRS/EGMUP Task Force on AI/ML. 

In Phase 1 of the CHF exercise, the proposed tasks will leverage the NRC CHF database 

to train data-driven ML models that could significantly improve upon the LUT prediction 

performance. The potential of ML has been demonstrated in an early ML regression 

analysis of the NRC CHF database using various ML algorithms (Grosfilley, 2022[4]) 

(Grosfilley et al., 2023[5]). 

Phase 2 of the CHF exercise (shortly described in Chapter 5 of this report) will further 

investigate advanced Verification, Validation and Uncertainty Quantification (VVUQ) for 

the developed ML models and transfer learning for applications to more complex 

geometries. Eventually, it is envisioned that the ML models would learn the underlying 

complex dependencies of the CHF phenomena, along with the associated uncertainties, and 

also be able to acquire knowledge across multiple databases for further improvements. The 

transfer learning capabilities of the developed ML models will be investigated in order to 

expand their applicability to domains not covered by the training database. 

Chapter 2 of this document provides an overview of the NRC CHF database. Chapter 3 

describes the benchmark tasks in detail, while Chapter 4 presents the expected data format 

to be used by the participants to submit their results. Chapter 5 outlines some initial plans 

for tasks that will be included in Phase 2 of the CHF exercise. Finally, in Chapter 6, a 

timeline for the main activities related to the CHF benchmark exercise is provided. 
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2. Critical heat flux database 

The reference experimental database selected for Phase 1 of the CHF exercise is described 

in Sections 2.1 to 2.3. Additional data, outside this reference database but within the same 

geometrical and operating ranges, will also be selected by the benchmark organisers for 

evaluating the participants’ ML models on a blind dataset. 

2.1. Reference database overview 

The NRC CHF database (Groeneveld, January, 2019[2]) is selected as the reference database 

for Phase 1 of the CHF exercise. The database contains 24 579 CHF measurements in 

vertical water-cooled uniformly heated tubes compiled from 59 different sources. The 

available data consists of measured boundary conditions (pressure, P, mass flux, G, inlet 

temperature, Tin, and critical heat flux, CHF), geometrical parameters (test section diameter, 

D, and heated length, L) and calculated parameters derived from measurements and water 

properties (outlet equilibrium quality, X, and inlet enthalpy, Hin). This database was 

collected from experimental measurements performed during a span of 60 years, based on 

various CHF identification methods, such as visual identification, physical burnout, 

changes in the test section resistances, and the usage of thermocouples. 

The parameter space covered by the NRC CHF database is substantial, as seen in Table 2.1 

and Figure 2.1. In the selection of the data, the database was purposely limited in term of 

diameter (2 < D < 25 mm), L/D ratio (L/D > 50 for X > 0, L/D > 25 for X < 0), pressure 

(100  P  21 000 kPa) and mass flux (0  G < 8 000 kg/m2/s) (Groeneveld, January, 

2019[2]). It should be noted, however, that the measured data is not equally distributed over 

the whole span and that no data beyond D = 16 mm was found in the database. 

Table 2.1. Parameter spans of the NRC CHF database 

 

While the NRC CHF database is mostly identical to the database used in the derivation of 

the 2006 CHF LUT, all proprietary datasets have been removed (Groeneveld, January, 

2019[2]). In addition, the database was screened for potential non-physical data, outliers and 

duplicates (Groeneveld, January, 2019[2]) (Groeneveld et al., Sept. 2007[6]). 
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Figure 2.1. Scatter plot matrix of the NRC CHF database showing  

the relationship between pair of variables 

 

2.2. Data subsets and references 

All references and an overview of all test facilities that have contributed to develop the 

NRC CHF database are documented in (Groeneveld, January, 2019[2]). A summary is 

provided in Table 2.2, including the number of data points and the parameter ranges 

covered by each considered dataset in terms of tube diameter, heated length, pressure, mass 

flux, outlet quality and inlet temperature. Note that this summary table is slightly different 

from Table 4-2 of (Groeneveld, January, 2019[2]), which includes additional data, such as 

proprietary data and data not included in the development of the 2006 CHF LUT. 

For the proposed CHF exercise, a reference ID (included in Table 2.2) was assigned to each 

dataset according to the order encountered in the data file. 

An effort will be made to retrieve and share the original references from which the NRC 

CHF database was developed. To support this effort, participants having access to some of 

the original references are encouraged to contact the benchmark organisers. 
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Table 2.2. Datasets and parameter ranges (min–max) overview of the NRC CHF database 

 

  

ID Reference from [2] Number

13 Alekseev 1964 1057 10.0 10.0 1.00 4.97 9.800 19.610 216 7566 -0.311 0.944 91.8 350.1

7 Alessandrini et al 1963 161 15.2 15.2 0.80 2.46 4.795 5.109 1100 4140 -0.040 0.740 185.6 265.3

28 Babarin et al 1969 103 12.0 12.0 0.96 1.80 0.290 0.310 100 500 0.510 0.997 16.0 124.0

3 Babcock and Hood 1962 11 8.0 14.2 0.61 0.61 0.413 6.890 4101 7302 -0.159 -0.050 19.4 191.5

58 Baek 2001 from KAIST 34 6.0 10.0 0.18 0.40 0.101 3.618 803 2032 -0.091 0.099 5.9 40.2

38 Bailey 1977 113 15.0 15.0 3.77 5.37 1.350 7.080 49 1383 0.450 0.990 92.9 286.3

29 Bailey and Lee 1969 157 9.3 9.3 3.05 3.05 6.895 18.340 958 4242 0.069 0.727 198.7 346.9

9 Becker 1963 AE 114, 1965 AE-177 809 10.0 10.0 0.60 2.50 0.520 4.884 100 2515 0.204 0.996 30.2 172.8

8 Becker 1965 AE-177 Table 1.1 749 3.9 10.0 0.96 3.12 0.235 5.776 153 2410 0.181 0.999 16.0 187.1

10 Becker 1965 AE-177 Table 1.2 752 10.0 13.1 0.40 3.00 0.216 3.844 111 1565 -0.069 0.909 16.1 147.7

11 Becker 1965 AE-177 Table 1.3 169 6.1 10.0 1.00 2.00 0.981 4.021 168 3183 0.096 0.907 30.1 63.1

17 Becker et al 1965 AE-178, AE-177 661 3.9 10.0 1.00 3.50 1.128 9.905 222 5451 -0.005 0.993 37.6 229.9

32 Becker et al 1970 69 2.4 3.0 0.50 0.50 3.100 7.100 365 2725 0.207 0.891 29.1 77.7

34 Becker et al 1971 1435 10.0 10.0 1.00 4.97 3.000 20.000 156 7568 -0.311 0.997 86.9 357.4

18 Bennett 1965 AERE R5055 198 9.2 12.6 1.73 5.56 6.612 7.481 624 5844 0.026 0.948 135.6 279.5

12 Bergles 1963 7 2.4 2.4 0.06 0.08 0.207 0.207 3037 6075 -0.037 -0.035 14.6 50.7

19 Burch and Hufschmidt 1965 134 10.0 10.0 0.35 0.35 1.100 3.090 930 3756 -0.246 0.000 16.8 60.3

50 Celata 1992 Revue Thermique 7 2.5 5.0 0.20 0.40 0.107 2.116 2166 5905 -0.015 0.288 18.9 22.5

51 Celata and Mariani 1993 7 4.0 4.0 0.10 0.10 0.794 2.508 4924 5157 -0.276 -0.107 30.2 69.8

42 Cheng et al 1983a 1983b 116 4.8 12.3 0.39 0.74 0.100 0.700 50 750 0.187 0.998 49.6 154.5

30 Dell et al. 1969 82 6.2 6.2 0.91 5.51 6.895 6.895 1329 4136 0.144 0.779 209.5 269.7

26 Era et al 1966 151 6.0 6.0 1.60 4.80 6.777 7.049 1105 3006 0.374 0.952 165.2 286.3

40 From Kirillov's data base 1992 271 8.0 8.0 0.24 0.40 0.170 3.080 1999 7078 -0.217 -0.001 27.4 148.2

20 Griffel 1965 218 6.2 12.8 0.91 1.93 5.171 10.343 936 7783 -0.069 0.592 45.9 285.5

44 Groeneveld 1985 117 10.0 10.0 1.00 2.00 7.900 20.000 282 2805 -0.097 0.805 76.9 220.4

21 Hewitt 1965 289 9.3 9.3 0.61 3.05 0.110 0.208 91 301 0.462 0.997 13.4 121.3

6 Hood and Isakoff 1962 10 8.0 12.9 0.60 1.11 6.895 6.895 664 2007 0.020 0.419 7.5 194.8

5 Hood 1962 16 8.0 14.2 0.61 0.61 0.414 8.412 2753 7200 -0.239 -0.052 17.5 189.9

48 Inasaka and Nariai 1989 3 3.0 3.0 0.10 0.10 0.310 0.910 5500 6700 -0.115 -0.056 26.0 54.0

52 Jafri 1993 12 15.7 15.7 2.44 2.44 0.362 1.060 1456 7830 0.095 0.435 74.4 171.5

33 Jens and Lottes 1951 29 5.7 5.7 0.63 0.63 3.448 13.790 1302 5356 -0.464 -0.021 48.7 266.9

24 Judd and Wilson 1966 49 11.3 11.3 1.83 1.83 6.861 13.859 674 3428 0.016 0.776 193.8 322.2

57 Kim et al 2000 482 6.0 12.0 0.30 1.77 0.104 0.951 40 277 0.458 0.999 20.5 156.3

43 Kirillov 1984 1985 2401 7.7 8.1 0.99 6.00 6.370 18.040 494 4154 -0.494 0.981 34.7 344.7

56 Kureta 1997 140 2.0 6.0 0.05 0.68 0.101 0.101 8 7156 -0.064 0.991 7.8 32.7

25 Lee 1966 AEEW R479 257 14.1 14.1 0.64 1.52 8.616 12.476 530 3410 -0.078 0.523 233.8 317.7

47 Leung et al 1989 62 5.5 5.5 2.51 2.51 5.030 9.710 1168 7442 0.210 0.578 221.9 305.1

1 Lowdermilk 1958 61 4.0 4.8 0.40 0.99 0.100 0.100 69 1645 0.420 0.990 20.6 23.9

22 Matzner et al 1965 83 10.2 10.2 2.44 4.88 6.893 6.893 1193 7960 0.008 0.693 17.3 275.7

27 Mayinger et al 1966 102 7.0 7.0 0.56 0.98 1.925 10.244 2255 3578 0.098 0.353 159.3 312.3

45 Nariai et al 1987 7 2.0 3.0 0.05 0.10 0.100 0.100 6900 7350 -0.070 -0.016 20.5 60.7

37 Nguyen and Yin 1975 56 12.6 12.6 2.44 4.88 6.645 8.401 930 3838 0.216 0.738 215.2 276.7

49 Olekhnovitch 1991, 1997, 1999 194 8.0 8.0 0.75 3.50 0.525 4.007 988 6082 0.046 0.761 59.7 244.5

55 Pabisz and Bergles  1966 6 4.4 4.4 0.11 0.11 0.872 1.284 3801 4567 -0.196 -0.147 22.1 46.2

14 Peterlongo et al 1966 342 15.1 15.2 2.24 4.02 4.943 6.551 1010 4020 -0.023 0.608 27.1 281.1

59 Shan 2004 70 8.0 15.8 1.00 2.44 0.317 14.808 572 7830 -0.022 0.422 18.9 328.4

2 Smolin 1962 616 3.8 10.8 0.78 4.00 7.840 19.610 498 7556 -0.132 0.786 64.7 346.5

39 Smolin 1979 2928 3.8 16.0 0.69 6.05 2.940 17.710 490 7672 -0.136 0.789 46.5 349.3

53 Soderquist 1994 1250 8.0 8.1 1.00 6.00 0.970 20.000 246 6086 -0.043 0.999 111.6 354.6

4 Swenson 1962 25 10.4 10.5 1.75 1.80 13.790 13.790 679 1765 0.178 0.502 231.4 329.4

54 Tain 1994 55 8.0 8.0 1.75 1.75 6.849 10.127 2401 7832 0.028 0.378 191.5 299.1

15 Tong 1994 218 6.2 12.9 0.76 3.66 5.171 13.790 678 7960 0.002 0.502 46.9 330.4

0 Unknown sources 384 5.6 12.8 0.43 2.01 5.270 7.490 405 5586 0.000 0.950 76.8 286.1

23 Waters et al  1965 17 11.2 11.2 1.52 3.65 6.895 10.342 6578 7961 -0.034 0.275 86.9 313.5

41 Williams and Beus 1980 128 9.5 9.5 1.84 1.84 2.758 15.169 324 4663 -0.025 0.929 90.6 315.6

46 Yin et al 1988 250 13.4 13.4 3.66 3.66 1.028 19.989 1939 2082 0.164 0.431 126.7 357.0

35 Zenkevich 1971 361 7.8 8.1 7.00 20.00 6.860 17.650 1008 2783 0.262 0.876 36.3 351.8

36 Zenkevich 1974 835 4.8 12.6 1.00 6.00 5.890 19.620 497 6694 -0.221 0.969 35.1 357.4

16 Zenkevich et al 1964 1 8.0 8.0 0.20 0.20 3.924 3.924 5361 5361 -0.004 -0.004 212.0 212.0

31 Zenkevich 5252 4.0 15.1 0.25 6.00 5.880 19.610 498 7964 -0.497 0.964 22.7 361.9

Total 24579 2.0 16.0 0.05 20.00 0.100 20.000 8 7964 -0.497 0.999 5.9 361.9

Heated lengthTube diameter

C

Inlet temperatureOutlet qualityMass fluxPressure

mm m MPa kg/m^2/s -
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2.3. Experimental data format 

The NRC CHF database is provided to the participants in the file chf_public.csv 

using a comma-separated values (csv) data format. This file consists of a cleaned-up 

version of the document obtained from the US NRC (Groeneveld, January, 2019[2]) with a 

few formatting changes to facilitate access using computer scripts. An example (when 

opened in Excel) of the first five data points can be seen in Table 2.3. 

Table 2.3. Example of data format used for distribution of the NRC CHF database 

Number  Reference 
ID 

Tube diameter Heated length Pressure Mass flux Outlet 
quality 

Inlet subcooling Inlet 
temperature 

CHF 

  m m kPa kg/m^2/s 

 

 kJ/kg 0C kW/m^2 

1 1 0.004 0.396 100 77.5 0.84 317 23.94 442 

2 1 0.004 0.396 100 142.7 0.79 317 23.94 757 

3 1 0.004 0.396 100 203.9 0.7 317 23.94 978 

4 1 0.004 0.396 100 271.8 0.73 317 23.94 1 325 

5 1 0.004 0.396 100 421.3 0.62 317 23.94 1 798 

 

The provided data can be classified into three categories: (1) geometry (tube diameter and 

heated length), (2) measured parameters (pressure, mass flux, inlet temperature and CHF), 

and (3) calculated parameters (outlet quality and inlet subcooling). The reference ID refers 

to the test facility ID listed in Table 2.2. 

The calculated input parameters (outlet quality and inlet subcooling) are derived from the 

measured parameters and water properties at saturation. For instance, the outlet equilibrium 

quality can be calculated from inlet temperature, power, mass flow and pressure-dependent 

fluid properties, based on energy conservation. These calculated values originate from the 

database provided by the US NRC (Groeneveld, January, 2019[2]). As needed, the 

participants can recalculate these parameters using the water properties of their choice 

(small variations may be observed). Note that these calculated input parameters provide 

redundant information that requires careful considerations when selecting the independent 

parameters (or features) of any ML regression model (see further discussion in Section 3.1). 

2.4. Test matrix for the benchmark activities 

The considered databases for Phase 1 of the CHF exercise are divided into (1) 

training/validation/testing datasets, (2) blind test dataset and (3) “slice” datasets. 

2.4.1. Training/validation/testing datasets 

The entire NRC CHF database may be considered for training, validation and testing. The 

participants are free to use any amount of data points from the provided database, any ML 

techniques to build the regression model, and any approaches for training and validation to 

improve the ML models’ prediction accuracy. The training, validation and testing datasets 

follow the definitions provided in Appendix A. Common techniques are hold-out tests and 

k-fold cross-validation. The purpose of these datasets is to support the selection, training 

and tuning of the final ML models that will eventually be tested with the unseen blind test 

dataset. 
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2.4.2. Blind test dataset 

The ML models developed by the participants will also be assessed using a separate blind 

tests dataset. This dataset will be selected outside the NRC CHF database and known only 

by the benchmark organisers. The same generic geometrical and test characteristics will 

remain, that is, vertical uniformly heated tube geometries within the parameter space 

covered by the NRC CHF database (see Table 2.1). 

As a separate assessment, keeping in mind the limitations in extrapolation of all ML models 

techniques, a dataset outside this parameter space could also be selected to analyse CHF 

prediction models performances in such conditions. 

2.4.3. “Slice” datasets 

In data analysis, slicing methods allow reducing databases into smaller and coherent parts, 

allowing extraction of further information and deeper understanding. An example of slicing 

method was used in (Groeneveld et al., Sept. 2007[6]) to identify experimental outliers and 

analyse how CHF varies as equilibrium quality increases (everything else being constant). 

In preparation for this benchmark, a similar and systematic slicing of the NRC CHF 

database has been performed where interesting regions of varying D, L, P, G and X have 

been identified, with all other parameters remaining reasonably constant. Among the 

identified data slices, two slices per varying parameters have been selected and documented 

in Table 2.4. In the provided databases (with file names identified in the table), the varying 

parameters are arbitrarily divided into 15 equidistant values, across the ranges defined in 

Table 2.1. These “slice” datasets will be used by the participants to demonstrate the 

physical behaviour of their predictive CHF models across the considered parameter space, 

including the prevention of overfitting. This will facilitate the explainability of the models 

and provide more confidence in their predictive capabilities. 

Table 2.4. Slice datasets 

 

It can be noted that slice 9 includes a significant decrease in CHF with increasing quality 

at around X = 0.4, which is referred to as the “limiting quality region” in (Groeneveld et al., 

Sept. 2007[6]). 

 

 

  

D L P G X

[mm] [m] [kPa] [kg/m2/s] [-]

1 0 - 16 6.000 14701 998.5 0.391 Slice_01.csv

2 0 - 16 6.000 9807 1003.3 0.529 Slice_02.csv

3 8.01 0 - 20 9806 1000.0 0.587 Slice_03.csv

4 8.11 0 - 20 2009 752.2 0.756 Slice_04.csv

5 8.00 0.998 0 - 20000 2006.0 0.140 Slice_05.csv

6 13.40 3.658 0 - 20000 20040.2 0.378 Slice_06.csv

7 8.00 1.570 12750 0 - 8000 0.144 Slice_07.csv

8 10.00 4.966 16000 0 - 8000 0.343 Slice_08.csv

9 8.14 1.943 9831 1519.5 -0.5 - 1.0 Slice_09.csv

10 8.00 0.997 17650 2002.7 -0.5 - 1.0 Slice_10.csv

Slice

#
Data file
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3. Benchmark tasks 

For the CHF exercise, the optional activities related to dimensionality analysis  

(Section 3.1) will be performed before proceeding to the regression task (Section 3.2) and 

VVUQ (Section 3.3). The requested data format for each task is documented in  

Chapter 4. Further activities, including advanced UQ and transfer learning to complex 

geometries using ML tools will be addressed subsequently and proposed in Phase 2 of the 

CHF exercise (see Chapter 5). 

3.1. Dimensionality analysis (Task 1) - optional 

CHF regression is commonly performed using predictive multivariate models, based on 

several input thermal-hydraulic quantities. Currently, most CHF prediction models for 

convective boiling systems use analytical functions that mainly depend on pressure, P, local 

mass flux, G, channel diameter, D, and local equilibrium quality, X: 

CHF = 𝑓(𝑃, 𝐺, 𝐷, 𝑋) 

Additional parameters are sometimes also included (such as the heated length, L). Other 

alternatives to this set of input parameters based on saturated fluid properties (instead of 

P), or non-dimensional formulations can also be found (e.g. in (Hall and Mudawar, 

2000[7])), which have the advantage to be potentially applicable to different fluids. 

The NRC CHF database offers the opportunity to perform dimensionality analysis with the 

aim to (1) reduce and (2) select the best performing input/output parameters for CHF model 

predictions. This analysis can be supported by ML dimensionality reduction techniques, 

which can be divided into (1) feature selection and (2) feature extraction.  

Applying these techniques has also the potential advantages of improving data scaling, 

speeding up training, lowering the risk of overfitting, and increasing the explainability of 

the model. 

This benchmark activity is optional but highly recommended. The participants may use any 

type of AI/ML methodology to select the most relevant input/output parameters for CHF 

regression based on the NRC CHF database and any other considerations (e.g. physical 

principles). In general, any of the available inputs or features that can be constructed from 

the available data could be used (accounting for the recommendations provided in this 

section). 

3.1.1. Feature selection (Task 1.1) 

Feature selection techniques allow reducing the number of variables, and avoiding 

redundancy in the process of developing a predictive model. Redundant variables tend to 

reduce the model’s generalisation capability and increase the overall complexity of the 

model. Various feature extraction techniques are available such as filter, wrapper and 

intrinsic methods. 

The participants may use any method of their choice, in combination with the NRC CHF 

database, to support this analysis. Note that, as a starting point, redundant parameters 

included in the data file have already been discussed in Section 2.3. 
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For this activity, the following recommendations are provided to the participants: 

• Attention should be given when selecting the set of input parameters to ensure that they 

are truly independent from CHF. In particular, when selecting the local equilibrium 

quality as input (calculated from other inputs parameters, including CHF), at least one 

of the parameters used in the heat balance equation (beside the heat flux) must be left 

out. 

• Correlation (or sensitivity) does not mean causation. In other words, an observed CHF 

sensitivity with an input variable might not be physically relevant. For instance, a 

significant but unexpected dependency of CHF with heated length was found in 

(Grosfilley, 2022[4]) and (Grosfilley et al., 2023[5]) using the NRC CHF database. Such 

dependency cannot, however, be reasonably justified for large L/D as discussed in 

(Groeneveld et al., Sept. 2007[6]). Hence other, more relevant, parameters must be found 

to adequately capture this dependency. The same reasoning would also apply to any 

inlet-specific dependency, such as Tin, at large L/D. 

3.1.2. Feature extraction (Task 1.2) 

Feature extraction techniques allow combining model variables into new, more relevant, 

variables (of same or lower dimensions). For instance, the transformation of a model from 

a dimensional to a non-dimensional form can be considered a type of feature extraction 

(however not data-driven). Feature extraction can also help in data scaling in a more 

appropriate way than model training. Various feature extraction techniques, such as 

principal component analysis (PCA), are relevant and can be considered by the participants. 

Domain knowledge based feature engineering, which is closely related to feature 

extraction, could also be considered. The added value of the additional features should be 

ensured with respect to the explainability of the model. 

3.2. Machine learning regression (Task 2) 

The goal of this activity is to develop and assess data-driven (possibly, but not necessarily, 

physics-informed) AI/ML supervised regression algorithms to predict CHF using the set of 

input/output parameters selected from the outcome of the dimensionality analysis (see 

Section 3.1). While of interest, fully physics-based model development is not relevant to 

this benchmark. Participants that do not perform the dimensionality analysis can use the 

parameters of the equation provided in Section 3.1 (or any other well-defined formulation) 

as input/output parameters to the regression task. 

3.2.1. Model optimisation (Task 2.1) 

Any ML regression algorithms (and any variations within the same algorithm) can be 

selected and investigated for this activity. In this task, various optimisations of the selected 

algorithms with respect to data scaling, regularisation and all relevant hyperparameters will 

be assessed by the participants. 

• ML algorithms are generally dependent upon data scaling. For instance, when used 

without the consideration of feature extraction (Section 3.1.2), the input features yield 

order of magnitude differences over widely varying spans (as seen in Table 2.1). Data 

normalisation is hence recommended to utilise the database most efficiently across the 

parameter space. Common methods are based on Z (standardisation) or Min-Max 

normalisation. 
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• The use of regularisation methods is recommended to develop a well-behaved model, 

which is able to generalise without overfitting. Methods such as L2 regularisation or 

dropout may be used. 

• ML model hyperparameters tuning can be performed manually, or automatically, using 

widely available tools such as Optuna (Preferred Networks, Inc, 2023[8]). The models 

can be optimised with respect to performance (e.g. low loss function) together with any 

other relevant target (e.g. model size) by adjusting the model’s hyperparameters. For 

example, in the case of a neural network: the network architecture (e.g. number of 

hidden layers, number of neurons in each layer), the activation/loss functions and all 

parameters used for training (e.g. learning rate, number of batches, batch size, dropout 

rate) can potentially be optimised. 

The candidates can then report and select their best performing model(s) and proceed with 

final model training, validation (if applicable), and testing. 

3.2.2. Model training and validation (Task 2.2) 

After optimisation, the final training and validation of the selected ML predictive model(s) 

may be performed using the dataset and validation methods discussed in Section 2.4.1. 

Various outputs from the model training and validation will be requested, as documented 

in Section 4.2.2. 

3.2.3. Model testing (Task 2.3) 

A best practice to assess the prediction performances of a ML model (in particular with 

respect to overfitting) consists in testing the predictions using data unseen by the training 

and validation algorithms. While a separate testing evaluation will be performed by the 

benchmark organisers using a dataset outside the NRC CHF database (see Section 3.4), it 

is recommended for the participants to perform their own model performance assessment 

(using part of the NRC CHF database or any other datasets). If performed, outputs from 

this model testing will be requested, as documented in Sections 4.2.3 and 4.3.1. 

Eventually, the selected ML models will be applied over the entire NRC CHF database and 

the participants will be requested to provide the corresponding CHF predictions. 

3.3. Model evaluation (Task 3) 

Following training/validation and testing, the predictive ML model(s) selected by the 

participants in this task should be further evaluated with the objective to (1) assess the 

overall performance and (2) demonstrate that the model(s) are not overfitting. Note that in 

all activities, the predictions of CHF must be reported based on constant local conditions 

(Groeneveld et al., Sept. 2007[6]), that is, directly based on inputs specified in the NRC CHF 

database. 

Examples of requested evaluations can be found in Appendices C and D of this document, 

respectively using the CHF LUT (Groeneveld et al., Sept. 2007[6]) and the neural network 

(NN) documented in (Grosfilley, 2022[4]) and (Grosfilley et al., 2023[5]) as predictive 

models. 

3.3.1. Model performance assessment (Task 3.1) 

The participants should perform a model evaluation over the considered datasets described 

in Sections 2.4.1 (training/validation), 2.4.2 (testing) and the entire NRC CHF database 

using the metrics defined in Appendix A in terms of predicted/measured CHF, that is: 
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mean, standard deviation, root mean squared error (RMSE) in percentage error, mean 

absolute error (MAE) in percentage error, EQ2 and provide the results to the benchmark 

team using the corresponding templates (see Section 4.3.1). 

In addition, various CHF prediction assessment plots should be generated and provided, 

following the examples provided in Appendices C and D: 

• measured vs predicted CHF; 

• predicted/measured CHF histogram; 

• predicted/measured CHF scatter plots vs mass flux, outlet quality, pressure, diameter, 

heated length and heated length/diameter. 

Note that for model comparison purposes, the benchmark organisers will directly use the 

tabulated model outputs provided by the participants (see Section 4.3.1). 

3.3.2. Model behaviour and overfitting assessment (Task 3.2) 

The participants should ensure that the selected regression algorithm(s), and associated 

hyperparameters and training methodology, can generate a well-behaved CHF prediction 

model with no tendency to overfit. For that purpose, a task based on selected “slice” 

datasets (as documented in Section 2.4.3) has been defined. The participants should submit 

the prediction outputs of their CHF model(s) for the ten sets of conditions (“slices”) defined 

in the data files provided in Table 2.4. 

Examples of such file with varying parameter D (everything being held constant) and data 

plots for all slices are shown in Appendices C and D, along with CHF predictions from the 

considered predictive models. The models are expected to yield physical behaviour across 

the investigated parameter range, following the trend shown by the available data for the 

selected conditions. 

3.4. Independent model evaluation (Task 4) 

The benchmark team will gather and compile all the submitted results to perform data 

analysis and uncertainty assessment, similar to Task 3.1 performed by the participants. The 

various models will be cross-compared using the predictive metrics documented in 

Appendix A and trends across models will be computed. Note that a subgroup of the 

EGMUP Task Force on AI/ML is expected to be created to define acceptability criteria for 

AI/ML models and methods to assess that AI/ML models perform well for a specific safety 

related task. Based on recommendations from this subgroup, the benchmark team will 

consider performing additional model evaluations. 

In addition, an independent performance assessment of the participants’ ML models will 

be conducted by the benchmark organisers using a blind test dataset, which will be selected 

according to the criteria described in Section 2.4.2. The blind dataset provided to the 

participants will consist of the same input parameters as for the NRC CHF database, except 

for the CHF, the inlet temperature, and the inlet subcooling. Since the local quality will be 

provided, the inlet thermal conditions must be withdrawn as a simple heat balance would 

otherwise provide the corresponding heat flux (note that, following the discussion in 

Section 3.1.1, the use of inlet properties as input parameter is anyway not recommended). 

The blind test dataset will be made available to the participants under the file name 

chf_blind.csv. 

The participants will provide the CHF predicted by their trained ML model(s) for all 

conditions within the blind test dataset. The benchmark organisers will then compile the 
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results and perform cross-comparisons between the various AI/ML models and the actual 

measured CHF values. Participants are free to submit the CHF predictions for more than 

one ML model, as long as they follow the benchmark guidelines for each model. When 

submitting more than one model, however, participants should rank them by order of 

expected performance. 
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4. Submission data (Phase 1) 

The following sections outline the data and information required from each participant for 

Phase 1 of the CHF exercise. The submission itself will be handled via the NEA GitLab 

system and technical information on the submission process is provided on GitLab1: 

https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-

learning/phase1-chf-exercises/-/blob/main/README.md. 

4.1. Dimensionality analysis (Task 1) 

Note that this task is optional. 

4.1.1. Feature selection (Task 1.1) 

This activity is documented in Section 3.1.1. The participants will provide the considered 

variables (among D, L, P, G, Tin or Hin and X) and all relevant information supporting this 

selection. 

4.1.2. Feature extraction (Task 1.2) 

This activity is documented in Section 3.1.2. The participants will provide the considered 

input and output parameters of their model(s) and all relevant information supporting this 

selection. 

4.2. Machine learning regression (Task 2) 

4.2.1. Model optimisation (Task 2.1) 

Participants are responsible for selecting their regression ML algorithm and reporting its 

architecture. The approach used to optimise the model’s hyperparameters should be 

reported in detail. This includes the hyperparameter optimisation framework (if any), 

optimisation target(s) and the resulting algorithm architecture, data scaling and all training 

parameters (e.g. regularisation method, loss function, batch size, learning rate, activation 

function). 

It is important that any method employed is documented and that the results are properly 

reported. An example of submission template is provided in model_summary.xlsx 

and shown in Table 4.1, which includes the hyperparameters related to a NN algorithm. 

For other considered algorithms, the participants should include all relevant 

hyperparameters. In the case where the combined output from several models is used as an 

ensemble, the description of each model should be provided, as well as how the outputs 

were combined. 

In addition, all modules and libraries required by the model, including version number, 

should be listed. 

4.2.2. Model training and validation (Task 2.2) 

Participants will perform the training and validation of their selected ML model(s). The 

following information should be reported: 

 
1 Access to NEA GitLab is restricted to registered benchmark participants. 

https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-learning/phase1-chf-exercises/-/blob/main/README.md
https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-learning/phase1-chf-exercises/-/blob/main/README.md
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• the training/validation data selection and methods; 

• the loss curve (training and validation loss vs epoch number), if applicable; 

• the trained parameters associated with the selected algorithm(s) (e.g. weights and 

biases in the case of a neural network) to ensure transparency and reproducibility; 

• the trained model(s) in an open format, such as Open Neural Network Exchange 

(ONNX, see https://onnx.ai/). 

4.2.3. Model testing (Task 2.3) 

The test data selection method should be reported. 

Table 4.1. Template of model descriptions, associated hyperparameters and  

evaluation results (example for a NN model) 

 

 

 

Neural network

Layer architecture

Activation function

Data scaling

Batch size

Training steps per epoch

Optimizer

Regularization

Learning rate

Learning rate decay factor

Loss function

Validation

Early stopping

Number of epochs

Mean P/M

Std P/M

RMSPE [%]

MAPE [%]

Q
2
 error

Size of data set

Mean P/M

Std P/M

RMSPE [%]

MAPE [%]

Q
2
 error

Size of data set

Mean P/M

Std P/M

RMSPE [%]

MAPE [%]

Q2 error

Algorithm

Implementation platform

Output

Inputs

Hyperparameter optimization

   
   

  H
yp

er
p

ar
am

et
e

rs

Hyperparameter opt. target
General

Test

Training

Ev
al

u
at

io
n

All

Ev
al

u
at

io
n

Ev
al

u
at

io
n

Size of data set



NEA/WKP(2023)1   25 

  

  

4.3. Model evaluation (Task 3) 

4.3.1. Model performance assessment (Task 3.1) 

The participants should provide the CHF predicted by their model for the 24 579 data points 

of the NRC CHF database. The requested data format is the same as the database format 

(chf_public.csv), with one additional column for the predicted CHF. Two examples 

of the results files can be found in Table C.2 for the CHF LUT predictions and in  

Table D.2 for the CHF predictions from the NN documented in (Grosfilley, 2022[4]) and 

(Grosfilley et al., 2023[5]). 

The model performance assessment will be performed by the participants and reported 

using the template model_summary.xlsx shown in Table 4.1, using the metrics 

defined in Section 3.3.1. The training/validation dataset, test dataset and the entire NRC 

CHF database will be considered for this evaluation. An example of such assessment can 

be found in model_summary_NN.xlsx and in Table D.1 [for the CHF predictions from 

the NN documented in (Grosfilley, 2022[4]) and (Grosfilley et al., 2023[5])]. 

Finally, participants will report all figures and associated values described in Section 3.3.1. 

The example of such figures can be found in Appendix C (for the LUT) and Appendix D 

[for the NN documented in (Grosfilley, 2022[4]) and (Grosfilley et al., 2023[5])]. 

4.3.2. Model behaviour and overfitting assessment (Task 3.2) 

The participants should provide the results of their CHF model for the 10 data slices defined 

in Section 3.3.2. The boundary conditions for the data slices are provided in files 

Slice_XX.csv where XX varies from 01 to 10 (see Table 2.4). The CHF predicted by 

the model(s) will be provided by the participants in an additional column following the 

same data format. The example of such data file using the CHF LUT results can be found 

in Table C.4. Similar examples for the NN [documented in (Grosfilley, 2022[4]) and 

(Grosfilley et al., 2023[5])] can be found in Table D.3. 

As part of this task, participants should ensure the reasonable behaviour of their model 

across the investigated parameter space. For this purpose, the predicted CHF can be 

compared against the experimental data at similar conditions and against the LUT 

predictions, both provided in Appendix C. 

4.4. Independent model evaluation (Task 4) 

Based on the tabulated inputs from the participants, the benchmark team will generate 

similar outputs and plots as requested in Section 4.3 for each model and compile the 

models. 

In addition, the results from the blind test database will be compiled and compared against 

the experimental data. 

All results and conclusions will be provided to the benchmark participants and documented 

in a report.  
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5. Phase 2 Initial plans 

After completion of the Phase 1 activities, it is envisioned that participants proceed with 

the Phase 2 CHF benchmark exercise. Phase 2 will include more advanced model 

developments and evaluations, as outlined in this section. Modifications and additional 

analyses can also be considered, based on the feedback from the participants and the 

EGMUP Task Force on AI/ML. 

5.1. Advanced uncertainty quantification 

Consistency of model performances across the database will be performed (for instance, 

using ANOVA method). However, such approach can be superseded by various 

methodologies related to advanced uncertainty quantification (UQ) of ML regression 

algorithms proposed in the AI community and still under development. For example, 

dropout-based, ensemble-based and Bayesian neural network-based approaches for UQ of 

deep NNs. In essence, these methodologies would allow the quantification of uncertainties 

associated with any CHF prediction, supported by the prediction error with respect to 

available data in the considered region (per contrast to a “global” uncertainty quantification 

applicable across the entire validation range). Both epistemic and aleatory uncertainties are 

of interest, representative of model and measurement uncertainties, respectively. 

For the next phase of the benchmark, a task will be proposed where participants will select 

the UQ methodology of their choice and report their results. 

5.2. Transfer learning to other geometries 

Transfer learning has been widely used in the ML field, where various techniques leverage 

previously acquired data-driven knowledge to slightly different applications. When using 

transfer learning, knowledge gained from a database is transferred from one “region” of 

applications (e.g. CHF in simple geometry) to another (e.g. CHF in complex geometry). 

The purpose is to apply underlying physics learnt from a given database to a “region” with 

similar underlying physical behaviour but originates from another (potentially more 

complex) system (e.g. CHF in tubes vs. CHF in subchannels of a rod bundle). 

As an example, transfer learning in NNs can be performed by freezing a trained base model 

and adding new layers before the output layer. The added layers are then trained on a 

different dataset (e.g. representative of different geometry), hence retaining the knowledge 

of the base model. 

For the next phase of the benchmark, a CHF database from a geometry other than a tube 

(e.g. an annulus) will be selected. The participants will use their trained model with the 

NRC CHF database as a base model and transfer it to the new geometry. This task will be 

developed in several steps, with increasing complexity (including, to the extent possible, 

the effects of flow mixer, non-uniform axial power on CHF) up to realistic CHF predictions 

in fuel bundles. 

5.3. Model interpretability and explainability 

Various techniques can be employed in support of “interpretation” and “explanation” of 

ML models. This can be useful to avoid a full “black box” approach, which is desirable in 

particular for regulated industries. “The degree of interpretability of a ML model refers to 
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the degree of understanding of how a ML model is generating its predictions, i.e. to 

“ answer the exact why and how of the model’s behaviour” (Amazon Web Services, 

2023[9]). Explainability is a limited concept compared to interpretability, and refers to the 

users’ capability to grasp how model input influences model output.” 

Interpretability is strongly related to the model itself. For instance, a decision tree algorithm 

tends to be highly interpretable while a neural network is typically poorly interpretable. 

Explainability, on the other hand, is related to the model behaviour, which can be assessed 

using various methods. 

A model interpretability and explainability task will be defined, after further interactions 

between the participants and the EGMUP Task Force on AI and Machine Learning. One of 

the main goals of the task will be to provide relevant methods and guidelines in support of 

the licensing of CHF regression models based on ML algorithms. 

5.4. Fuel bundle benchmark 

For realistic applications to nuclear power plant safety analysis, ML CHF regression 

algorithms must be developed for fuel bundle geometries, accounting for the results of 

operating conditions, geometry (including spacer grids) and three-dimensional power 

distribution. 

As a final step for the CHF exercise, it is planned to organise a benchmark against a large 

CHF database in fuel bundles. The CHF database will be generated from publicly available 

datasets such as the Electric Power Research Institute (EPRI), (EPRI, 1982[10]), Boiling 

Water Reactor (BWR) Full-size Fine-mesh Bundle Tests (BFBT) (NEA, 2006[11]) and 

Pressurised Water Reactor (PWR) Subchannel and Bundle Tests (PSBT) (NEA, 2012[12]). 

As a preliminary activity (outside the benchmark), it is envisioned to generate the required 

local subchannel thermal-hydraulic parameters for all data points. The resulting subchannel 

output database and CHF locations (when reported in the database) will be provided to the 

participants. 

It is expected that the participants will develop ML regression models for this task based 

on all previously acquired knowledge, from the base NRC CHF database in simple 

geometry, making use of transfer learning and applying advanced UQ methodologies. 

Eventually, the assessment of such an approach for reactor safety analysis, allowable 

operational margin, etc. will be performed and compared to current methods. 
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6. Timeline 

The main activities related to the CHF Exercise for the Benchmark on Artificial 

Intelligence and Machine Learning for Scientific Computing in Nuclear Engineering are 

expected to be performed according to the following timeline: 

CHF Benchmark introduction at Task Force meeting December 2022 

Phase 1 Draft specification and distribution May 2023 

Presentation at 2023 NEA/WPRS Annual Workshops May 2023 

Phase 1 Final specifications and distribution September 2023 

Phase 1 Online kick-off meeting October 2023 

Phase 1 Online Q&A meeting (optional) December 2023 

Phase 2 Draft specifications and distribution May 2024 

Presentation at 2024 NEA/WPRS Annual Workshops May 2024 

Phase 1 Submission August 2024 

Phase 2 Final specifications and distribution September 2024 

Phase 2 Online kick-off meeting October 2024 

Phase 1 Results draft report and online meeting December 2024 

Phase 2 (fuel bundle) Draft specifications and distribution May 2025 

Presentation at 2025 NEA/WPRS Annual Workshops May 2025 

Phase 2 Submission August 2025 

Phase 2 (fuel bundle) Final specifications and distribution September 2025 

Phase 2 (fuel bundle) Online kick-off meeting October 2025 

Presentation at 2026 NEA/WPRS Annual Workshops May 2026 

Phase 2 (fuel bundle) Submission August 2026 
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Appendix A. General definitions and theory 

A.1 Definitions 

The benchmark involves both AI/ML and M&S terminology that could create confusion 

and misinterpretations. For this reason, it is important to clearly define the most important 

terms used within the benchmark specifications. In this appendix, definitions are provided 

for important AI/ML terms. The NRC has recently published a strategic plan for AI and 

ML that includes among others terminology definitions for various aspects of AI/ML that 

are relevant to this benchmark (NRC, 2023[13]). Wherever seemed appropriate, these 

definitions were adopted in this appendix. 

Artificial Intelligence (NRC, 2023[13]) (McCarthy, 2004[14]): It is the science and 

engineering of making intelligent machines, especially intelligent computer programs, that 

have the ability to emulate human-like perception, cognition, planning, learning, 

communication, or physical action. For a given set of human-defined objectives, AI can 

make predictions, recommendations, or decisions influencing real or virtual environments. 

Machine Learning (NRC, 2023[13]) (IBM, 2023[15]) (Trask, 2019[16]): It is a field of study 

within computer science and a branch of artificial intelligence, which focuses on 

developing the ability in machines to learn how to perform tasks without being explicitly 

programmed. Computer algorithms and data are used to gradually improve the accuracy of 

the performed tasks by observing underlying patterns. An illustration of the relationship 

between AI and ML can be found in Figure 1 of (NRC, 2023[13]).  

Training (Google, 2023[17]): The process of determining the ML model parameters (e.g. 

weights) using available data. During this process the parameters are gradually updated in 

order to reduce the discrepancies between the predictions and the data.  

Validation: The initial evaluation of the ML model accuracy using data not seen during the 

training process to avoid overfitting. An evaluation is performed for every set of selected 

hyperparameters in order to determine the optimal hyperparameters. Validation thus can be 

seen as the process of determining the hyperparameters for the ML model. 

Testing: The final evaluation of the ML model accuracy after the hyperparameters have 

been selected based on the validation outcome. This evaluation is performed on data not 

seen neither during training nor during validation. The computed accuracy is the one 

associated with the ML model predictive capabilities. 

Hyperparameters: Parameters that are not part of the ML model but that are part of the 

training process. These parameters impact the learning of the model but are not used when 

the model makes predictions. 

Overfitting: The situation that occurs when a ML model fits the training data very closely 

but cannot generalise to unseen data. The validation and testing evaluations should mitigate 

overfitting. 

Aleatoric Uncertainty (Roy and Oberkampf, 2011[18]) (ASME, 2022[19]): An irreducible 

form of uncertainty due to inherent stochastic variability. Examples of this type of 

uncertainty are the movement of atoms in materials and uncertainties arising in 

manufacturing processes. 

Epistemic Uncertainty (Roy and Oberkampf, 2011[18]) (ASME, 2022[19]): A reducible form 

of uncertainty due to lack of knowledge or incomplete information. The uncertainty reduces 
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by gathering more information. An example of this type of uncertainty is modelling 

uncertainty. 

Error (ASME, 2022[19]): The difference between a measured or calculated value and the 

true value or its proxy. The error can be impacted by both systematic and random effects. 

A.2 Theory 

Beyond terminology definitions, it is important to clearly define statistical terms used 

throughout this document. The mean (μ) is defined as the expected value of a random 

variable 𝑌, which is assumed to be continuous with probability density function (pdf) 

𝑝𝑌(𝑦): 

 

μ = 𝐸[𝑌] =  ∫ 𝑦𝑝𝑌(𝑦)𝑑𝑦

∞

−∞

  (1) 

If a pdf is unknown and the only thing available for 𝑌 is a set of 𝑁 samples/measurements 

𝑦𝑖 with 𝑖 = 1 … 𝑁, then its mean can be estimated through: 

 
μ̂ =

∑ 𝑦𝑖
𝑁
𝑖=1

𝑁
  (2) 

The standard deviation (σ) of a random variable is a metric of dispersion around its 

expected value and for the continuous random variable 𝑌 defined as: 

 

σ = √𝐸[(𝑌 − 𝜇)2] =  √ ∫(𝑦 − 𝜇)2𝑝𝑌(𝑦)𝑑𝑦

∞

−∞

  (3) 

As for the mean, if the only thing available for 𝑌 is a set of 𝑁 samples/measurements 𝑦𝑖 

with 𝑖 = 1 … 𝑁, then the standard deviation can be estimated through: 

 

σ̂ = √
∑ (𝑦𝑖 − μ̂)2𝑁

𝑖=1

𝑁 − 1
   (4) 

In this benchmark, three further metrics are considered for measuring the discrepancy 

between predictions and measurements. The first metric is the root mean square error 

(RMSE) defined in Equation 5 and estimated through Equation 6. In Equation 7, the RMSE 

is defined in percentage. In these equations, 𝑌𝑚 is the measured variable with values 𝑦𝑖
𝑚 

and 𝑌 is the predicted variable with values 𝑦𝑖.  

 

 𝑅𝑀𝑆𝐸 = √𝐸[(𝑌 − 𝑌𝑚)2]  
 

(5) 

 

 

𝑅𝑀𝑆�̂� = √∑ (𝑦𝑖 − 𝑦𝑖
𝑚)𝑁

𝑖=1
2

𝑁
  (6) 

 

 

𝑅𝑀𝑆𝐸𝑝
̂ = 100

√∑ (
𝑦𝑖 − 𝑦𝑖

𝑚

𝑦𝑖
𝑚 )

2

 𝑁
𝑖=1

𝑁
  

(7) 



NEA/WKP(2023)1   33 

  

  

The second metric is the mean absolute error (MAE) defined in Equation 8 and estimated 

through Equation 9. In Equation 10, the MAE is defined in percentage. MAE assigns equal 

weight to all discrepancies while RMSE puts more weight on larger discrepancies. 

 

 MAE = 𝐸[|𝑌 − 𝑌𝑚|]  
 

(8) 

 

 
MAÊ =

∑ |𝑦𝑖 − 𝑦𝑖
𝑚|𝑁

𝑖=1

𝑁
  (9) 

 

MAEp̂ = 100

∑ |
𝑦𝑖   −  𝑦𝑖

𝑚

𝑦𝑖
𝑚 |𝑁

𝑖=1

𝑁
  

(10) 

 

Finally, the third metric is the 𝑄2 error (𝐸𝑄2) defined in Equation 11 and estimated 

through Equation 12. Both previous metrics measure discrepancies without accounting for 

the random variable variance. This means that small values of RMSE and MAE can be 

misleading when the random variable shows small variations. The 𝐸𝑄2 weights the square 

error discrepancies by the variance and essentially measures how much of the variability 

of the data are actually captured by the ML model. There could be cases where the RMSE 

will be small and thus the numerator of 𝐸𝑄2 will be small but the variance in the 

denominator will also be small and thus the 𝐸𝑄2 metric will end up having a large value. 

A value of 0 indicates that the ML model has perfect predictive capabilities, while a value 

greater than 1 indicates that the ML model is worse than a model using always the mean 

value as its prediction. 

 
𝐸𝑄2 =

𝐸[(𝑌 − 𝑌𝑚)2]

𝐸[(𝑌 − μ)2]
 

 

(11) 

 

 
𝐸𝑄2 =  

∑ (𝑦𝑖 − 𝑦𝑖
𝑚)2𝑁

𝑖=1

∑ (𝑦𝑖 − μ̂)2𝑁
𝑖=1

  (12) 
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Appendix B. Files 

All required input files are stored in the NEA GitLab repository of the NEA 

NSC/WPRS/EGMUP Task Force on AI and Machine Learning: in directory: 

https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-

learning/phase1-chf-exercises/-/tree/main/data/. 

Access to the NEA GitLab repository is restricted to registered benchmark participants.  

Table B.1. List of CHF benchmark files 

  

Directory name File name Description

inputs chf_public.csv NRC CHF database

chf_blind.csv Blind test data set

model_summary.xlsx Model and evaluation summary template

Slice_01.csv Slice data set with varying D (1)

Slice_02.csv Slice data set with varying D (2)

Slice_03.csv Slice data set with varying L (1)

Slice_04.csv Slice data set with varying L (2)

Slice_05.csv Slice data set with varying P (1)

Slice_06.csv Slice data set with varying P (2)

Slice_07.csv Slice data set with varying G (1)

Slice_08.csv Slice data set with varying G (2)

Slice_09.csv Slice data set with varying X (1)

Slice_10.csv Slice data set with varying X (2)

results/LUT LUT2006.xls Tabulated LUT

chf_public_LUT.csv LUT results for the NRC CHF database

Slice_01_LUT.csv LUT results for the slice data set with varying D (1)

Slice_02_LUT.csv LUT results for the slice data set with varying D (2)

Slice_03_LUT.csv LUT results for the slice data set with varying L (1)

Slice_04_LUT.csv LUT results for the slice data set with varying L (2)

Slice_05_LUT.csv LUT results for the slice data set with varying P (1)

Slice_06_LUT.csv LUT results for the slice data set with varying P (2)

Slice_07_LUT.csv LUT results for the slice data set with varying G (1)

Slice_08_LUT.csv LUT results for the slice data set with varying G (2)

Slice_09_LUT.csv LUT results for the slice data set with varying X (1)

Slice_10_LUT.csv LUT results for the slice data set with varying X (2)

results/NN chf_public_NN.csv Example of NN results for the NRC CHF database

model_summary_NN.xlsx Example of NN model and evaluation summary

Slice_01_NN.csv NN results for the slice data set with varying D (1)

Slice_02_NN.csv NN results for the slice data set with varying D (2)

Slice_03_NN.csv NN results for the slice data set with varying L (1)

Slice_04_NN.csv NN results for the slice data set with varying L (2)

Slice_05_NN.csv NN results for the slice data set with varying P (1)

Slice_06_NN.csv NN results for the slice data set with varying P (2)

Slice_07_NN.csv NN results for the slice data set with varying G (1)

Slice_08_NN.csv NN results for the slice data set with varying G (2)

Slice_09_NN.csv NN results for the slice data set with varying X (1)

Slice_10_NN.csv NN results for the slice data set with varying X (2)

https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-learning/phase1-chf-exercises/-/tree/main/data/
https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-learning/phase1-chf-exercises/-/tree/main/data/
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Appendix C. CHF Lookup (LUT) table results 

The CHF lookup table (LUT) (Groeneveld et al., Sept. 2007[6]) is a simple data-driven 

model to predict CHF in vertical uniformly heated tubes over a wide range of conditions. 

For practical use of a tabulated model, the number of input data entries is limited to three. 

Since they are generally seen as the most influential parameters, the LUT utilises the 

pressure, P, mass flux, G, and local equilibrium quality, X, as input parameters within 

ranges shown in the following table. 

Table C.1. Parameter ranges covered by the CHF LUT 

 

For any given triplets (P, G, X), linear interpolation within the LUT is used to predict CHF 

for a reference tube diameter of 8 mm. The following correction is then performed to adjust 

the predicted CHF to the actual tube diameter (Groeneveld et al., Sept. 2007[6]): 

𝐶𝐻𝐹𝐷 = 𝐶𝐻𝐹8 𝑚𝑚 ∙ (
𝐷

8 𝑚𝑚
)

−0.5

 

where D can range within values covered by the database (that is, 2 to 16 mm). 

The CHF database used to develop the LUT is roughly the same as the NRC CHF database, 

with the exception of some additional (but limited) proprietary CHF data. The LUT is 

reported to have a root mean squared error of 38.92% when predicting CHF using constant 

local conditions (Groeneveld et al., Sept. 2007[6]). 

The results of the CHF LUT for the relevant benchmark activities are documented in this 

appendix. All data are provided in the formats required for the benchmark and provided in 

the following directory on NEA GitLab2: 

https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-

learning/phase1-chf-exercises/-/tree/main/data/results/LUT. 

This can be used both as reference results (that is, the developed ML models are expected 

to outperform the LUT) and as example of data and information to be provided.  

In the case where the participants would like to perform their own evaluation using the 

CHF LUT, the 8 mm CHF tables are provided in the file LUT2006.xls. 

The CHF predictions for the 24 579 data points of the NRC CHF database are provided in 

the file CHF_public_LUT.csv. An example (when open in Excel) for the first 5 data 

points is shown in Table C.2. The corresponding model performance metrics calculated for 

the entire NRC CHF database (24 579 data points) are provided below in Table C.3. The 

model prediction plots are provided in Figure C.1 (measured CHF vs predicted CHF), 

Figure C.2 (P/M histogram) and Figure C.3 (P/M scatter plots vs selected independent 

parameters). 

 
2 Access to NEA GitLab is restricted to registered benchmark participants. 

https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-learning/phase1-chf-exercises/-/tree/main/data/results/LUT
https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-learning/phase1-chf-exercises/-/tree/main/data/results/LUT
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The results from the slice analysis are shown in the following pages. An example of LUT 

CHF prediction for slice 1 (varying diameter) can be found in Table C.4. The plots for all 

considered slices are shown in Figures C.4 to C.8. The experimental data at similar 

conditions found within the NRC CHF database are represented by circle markers. 

Table C.2. Example of CHF LUT results 

 

Table C.3. CHF LUT prediction performances 

 

Figure C.1. Measured vs LUT predicted CHF 

 

Number Reference ID Tube Diameter Heated Length Pressure Mass Flux Outlet Quality Inlet Subcooling Inlet Temperature CHF CHF LUT

- - m m kPa kg/m^2/s - kJ/kg C kW/m^2 kW/m^2

1 1 0.004 0.396 100 77.5 0.84 317 23.94 442 469.0946386

2 1 0.004 0.396 100 142.7 0.79 317 23.94 757 687.0899317

3 1 0.004 0.396 100 203.9 0.7 317 23.94 978 903.6294333

4 1 0.004 0.396 100 271.8 0.73 317 23.94 1325 873.6220843

5 1 0.004 0.396 100 421.3 0.62 317 23.94 1798 1372.801147

Size of data set 24579 samples

Mean P/M 1.032

Std P/M 0.362

RMSPE [%] 19.8

MAPE [%] 36.300

Q
2
 error 0.063

All

Ev
al

ua
ti

o
n
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Figure C.2. LUT Predicted over measured CHF histogram 

 

Figure C.3. LUT Predicted over Measured CHF scatter plots, vs selected independent parameters 
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Table C.4. CHF LUT prediction results for Slice 1 

 

Figure C.4. Variations of predicted LUT CHF vs diameter (D, in [m]) for slices 1 and 2, 

and corresponding NRC CHF data points 

 

Tube Diameter Heated Length Pressure Mass Flux Outlet Quality CHF LUT

m m Pa kg/m^2/s - W/m^2

0.002 6 14701250 998.5 0.390875 1258364.212

0.003 6 14701250 998.5 0.390875 1027450.076

0.004 6 14701250 998.5 0.390875 889797.8672

0.005 6 14701250 998.5 0.390875 795859.4069

0.006 6 14701250 998.5 0.390875 726516.9163

0.007 6 14701250 998.5 0.390875 672623.9639

0.008 6 14701250 998.5 0.390875 629182.1058

0.009 6 14701250 998.5 0.390875 593198.5781

0.01 6 14701250 998.5 0.390875 562757.5835

0.011 6 14701250 998.5 0.390875 536568.3027

0.012 6 14701250 998.5 0.390875 513725.0381

0.013 6 14701250 998.5 0.390875 493571.0515

0.014 6 14701250 998.5 0.390875 475616.9661

0.015 6 14701250 998.5 0.390875 459489.6428

0.016 6 14701250 998.5 0.390875 444898.9336
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Figure C.5. Variations of predicted LUT CHF vs heated length (L, in [m]) range for slices 3 and 4, 

and corresponding NRC CHF data points 

 

Figure C.6. Variations of predicted LUT CHF vs pressure (P, in [Pa]) for slices 5 and 6, 

and corresponding NRC CHF data points 
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Figure C.7. Variations of predicted LUT CHF vs mass flux (G, in [kg/m2/s]) for slices 7 and 8, 

and corresponding NRC CHF data points 

 

Figure C.8. Variations of predicted LUT CHF vs quality (X) for slices 9 and 10  

and corresponding NRC CHF data points 
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Appendix D. Example of neural network (NN) results 

A neural network (NN) was developed in (Grosfilley, 2022[4]) and (Grosfilley et al., 

2023[5]), selected among various tested ML algorithms, based on the CHF NRC database. 

The requested benchmark outputs have been generated for this model and documented in 

this appendix. The performances of the model have also been compared to the reference 

CHF LUT predictions. 

Note that this predictive CHF model uses the heated length, L, as input. Unless justified, 

direct use of this parameter is, however, not recommended (see discussion in Section 3.1.1). 

The ML model development tools and architecture, hyperparameters, training/optimisation 

methods and calculated model performance metrics are documented in Table D.1. 

The NN was trained over 1 150 epochs where the loss (MSLE) decreased as shown in 

Figure D.1. Note that the loss for the test database was only calculated once, after 

completion of the training.  

The results obtained with the NN is provided in the following directory on NEA GitLab3: 

https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-

learning/phase1-chf-exercises/-/tree/main/data/results/NN. 

The CHF predictions for the 24 579 data points of the NRC CHF database are provided in 

the file CHF_public_NN.csv. 

An example (when open in Excel) for the first 5 data points is shown in Table D.2. 

The model prediction plots are provided in Figure D.2 (measured CHF vs predicted CHF), 

Figure D.3 (P/M histogram) and Figure D.4 (P/M scatter plots vs selected independent 

parameters). For all plots, the prediction of both the LUT (also shown in Appendix C) and 

the NN are shown. 

An example of NN CHF prediction for slice 1 (varying diameter) can be found in  

Table D.3. The plots for all considered slices are shown in Figures D.5 to D.9. The 

experimental data at similar conditions found within the NRC CHF database are 

represented by circle markers. For all plots, the results from the LUT are also represented 

for comparison.  

  

 
3 Access to NEA GitLab is restricted to registered benchmark participants. 

https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-learning/phase1-chf-exercises/-/tree/main/data/results/NN
https://git.oecd-nea.org/science/wprs/egmup-task-force-on-ai-and-machine-learning/phase1-chf-exercises/-/tree/main/data/results/NN
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Table D.1. Example of CHF NN architecture, hyperparameters and prediction performances 

 

Source: (Grosfilley, 2022[4]) (Grosfilley et al., 2023[5]) 

Table D.2. Example of CHF NN results 

 

 

Neural network

TensorFlow

Optuna

MSLE and size

P, G, D, L, X

CHF

Layer architecture 5, 61, 51, 28, 39, 26, 21, 20, 14, 1

Activation function ReLu

Data scaling StandardScaler

Batch size 16

Training steps per epoch 1230

Optimizer Adam

Regularization Dropout rate of 0.01 on first two layers

Learning rate 0.001

Learning rate decay factor 0.96 every 32 epoch

Loss function MSLE

Validation 5-fold cross-validation

Early stopping No decrease in validation loss for 50 epochs in a row

Number of epochs 1150

Random 80% of 24579 samples

Mean P/M 1.009

Std P/M 0.113

RMSPE [%] 12.5

MAPE [%]

Q2 error

Size of data set Remaining 20% of 24579 samples

Mean P/M 1.013

Std P/M 0.123

RMSPE [%] 13.4

MAPE [%]

Q2 error

Size of data set 24579 samples

Mean P/M 1.010

Std P/M 0.115

RMSPE [%] 12.6

MAPE [%] 8.0

Q2 error 0.022

General

Test

Hyperparameter opt. target

Training

Ev
al

u
at

io
n

All

Ev
al

u
at

io
n

Ev
al

u
at

io
n

Size of data set

Algorithm

Implementation platform

Output

Inputs

Hyperparameter optimization

   
   

  H
yp

er
p

ar
am

et
er

s

Number Reference ID Tube Diameter Heated Length Pressure Mass Flux Outlet Quality Inlet Subcooling Inlet Temperature CHF CHF NN

- - m m kPa kg/m^2/s - kJ/kg C kW/m^2 kW/m^2

1 1 0.004 0.396 100 77.5 0.84 317 23.94 442 485.8004

2 1 0.004 0.396 100 142.7 0.79 317 23.94 757 838.8955

3 1 0.004 0.396 100 203.9 0.7 317 23.94 978 1001.399

4 1 0.004 0.396 100 271.8 0.73 317 23.94 1325 1414.337

5 1 0.004 0.396 100 421.3 0.62 317 23.94 1798 1867.432
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Figure D.1. NN loss curve 

 

Source: reproduced from (Grosfilley et al., 2023[5])). 

Figure D.2. Measured vs LUT (blue) and NN (green) predicted CHF 
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Figure D.3. LUT (blue) and NN (green) Predicted over Measured CHF histogram 

 

Figure D.4. LUT (blue) and NN (green) Predicted over Measured CHF scatter plots,  

vs selected independent parameters 
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Table D.3. NN CHF prediction results for Slice 1 

 

Figure D.5. Variations of predicted LUT (blue) and NN (green) CHF vs diameter (D, in [m]) for 

slices 1 and 2, and corresponding NRC CHF data points 

 

Tube Diameter Heated Length Pressure Mass Flux Outlet Quality CHF LUT

m m Pa kg/m^2/s - W/m^2

0.002 6 14701250 998.5 0.390875 657659.8

0.003 6 14701250 998.5 0.390875 550817

0.004 6 14701250 998.5 0.390875 343829.4

0.005 6 14701250 998.5 0.390875 305005.5

0.006 6 14701250 998.5 0.390875 357454.7

0.007 6 14701250 998.5 0.390875 384713

0.008 6 14701250 998.5 0.390875 450119.7

0.009 6 14701250 998.5 0.390875 442271.2

0.01 6 14701250 998.5 0.390875 449112.6

0.011 6 14701250 998.5 0.390875 377457.9

0.012 6 14701250 998.5 0.390875 397470.5

0.013 6 14701250 998.5 0.390875 425027.6

0.014 6 14701250 998.5 0.390875 475281.9

0.015 6 14701250 998.5 0.390875 483809

0.016 6 14701250 998.5 0.390875 438802.7
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Figure D.6. Variations of predicted LUT (blue) and NN (green) CHF vs heated length (L, in [m]) 

for slices 3 and 4, and corresponding NRC CHF data points 

 

Figure D.7. Variations of predicted LUT (blue) and NN (green) CHF vs pressure  

(P, in [Pa]) for slices 5 and 6, and corresponding NRC CHF data points 
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Figure D.8. Variations of predicted LUT (blue) and NN (green) CHF vs mass flux  

(G, in [kg/m2/s]) for slices 7 and 8, and corresponding NRC CHF data points 

 

Figure D.9. Variations of predicted LUT (blue) and NN (green) CHF vs quality (X)  

for slices 9 and 10, and corresponding NRC CHF data points 
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