NEA Workshop on High-Temperature Reactors and Industrial Heat Applications

Jeff Harper, Vice President Business Development and Strategy, X-energy
801 Thompson Ave., Rockville, MD 20852
Direct: +1.301.658.2342 Email: jharper@x-energy.com

7 October 2021
We Design and Build Reactors and the Fuel That Powers Them

Reactor: Xe-100
We’re focused on Gen-IV High-Temperature Gas-cooled Reactors (HTGR) as the technology of choice, with advantages in sustainability, economics, reliability and safety.

Reactor: Xe-Mobile
To address the need for ground, sea and air transportable small power production. We’ve developed reactor concepts with potential civilian government, remote community and critical infrastructure applications.

Fuel: TRISO-X
Our reactors use tri-structural isotropic (TRISO) particle fuel, developed and improved over 60 years. We manufacture our own proprietary version (TRISO-X) to ensure supply and quality control.

Space Applications
NASA, DOE, and DOD are exploring our technology and fuel for nuclear thermal propulsion and fission power for the lunar surface.
The “Xe-100“- Innovative and Flexible

(1) Right size

The reactor size of 200MWt (80MWe) has been designed to address the largest possible market providing a good fit for replacement of existing carbon-based heat sources such as coal and gas.

Heat is generated in the pebble fuel through fission and transferred to the steam generator using helium that cannot be activated.

(2) Broad range of applications

The nuclear island has been designed to be independent of the end use making our solution deployable for electricity and many other applications that require process heat to replace carbon-based fuels:
- Hydrogen production
- Desalination
- Petrochemical industries
- District heating ….

(3) Flexible power delivery

Designed to be capable of fast and efficient load following thus supporting the intermittency of solar and wind.
Energy Density for Nuclear Makes It a Desirable Choice

1 pebble: 7g with 15.5% wt Low Enriched Uranium, 27.4 MWh

2.66 metric tons of coal

8.0 metric tons of CO₂

about 0.8 metric tons of ash

Reference: https://www.eia.gov/tools/faqs/faq.cfm?id=667&t=2
What makes our design Special?

It All Starts With The Fuel!

TRISO particle fuel has a proven pedigree – more than 30 years of operational and fuel fabrication experience
Tested to 1,800°C – remains safe and cannot melt even without active cooling
Burnup to 167,000 MW/t – this is 4 times higher than existing reactors and significantly improves overall economics
Each pebble contains approximately 18,000 TRISO fuel particles – This is equivalent to 18,000 independent miniature containment vessels – these particles replace the need for many complex safety systems that are required in traditional reactors
Excellent long-term robustness (thousands of years) which provides excellent spent fuel containment after use

How is this different?
Retaining the fission products within the fuel without requiring complex safety systems helps engineers to simply the design, this reduces licensing complexity, system cost and construction times.

This fuel allows engineers to think differently about reactor design, ultimate safety and rugged predictable long-term storage.
X-energy SMR Deployment Canon

PUBLIC - REGULATORY

Regulatory timeframe should be aligned with business case

COMMERCIAL

Technology offering must support business case

TECHNOLOGY

Technology must be licensable
X-energy is Ready to Deploy Reactors this Decade

<table>
<thead>
<tr>
<th>Program</th>
<th>Entrants</th>
<th>Status and Award</th>
<th>Down-Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. DOD Mobile Microreactor Program</td>
<td>9</td>
<td>• DOD will make final down-selection March 2022</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Winners will benefit from ~300 MW of DOD demand through 2040</td>
<td></td>
</tr>
<tr>
<td>OPG SMR Deployment</td>
<td>10</td>
<td>• OPG will make a final down-selection to a single winner no later than Q4'21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Winner will build reactor at Darlington site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Consortium of Canadian utilities has stated desire to build a fleet</td>
<td></td>
</tr>
<tr>
<td>U.S. DOE Advanced Reactor Demonstration Program</td>
<td>37</td>
<td>• Final two winners selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DOE cost contribution of $1.2 bn to X-energy Project</td>
<td></td>
</tr>
</tbody>
</table>
X-energy typical Impact on the Local economy

Xe-100 Standard Plant

Construction: Creates approximately 800 – 1200 jobs

Operations: Creates approximately 100-200 jobs