MULTI-SECTOR WORKSHOP ON INNOVATIVE REGULATION

Challenges and benefits of harmonising the licensing process for emerging technologies

14-18 December 2020
MULTI-SECTOR WORKSHOP ON INNOVATIVE REGULATION

Challenges and benefits of harmonising the licensing process for emerging technologies

Welcome

Day 5 – Friday 18 December
Session 6

Harmonisation of licensing: beyond regulators and licensees, how do the other stakeholders view the situation?
Session Moderator

Mr. Ramzi JAMMAL
Executive Vice-President and Chief Regulatory Operations Officer Regulatory Operations Branch
Canadian Nuclear Safety Commission (CNSC)
Mr. Bruce CHEW

Federal Research Leader for Deloitte’s Center for Government Insights (DCGI) and Managing Director in Deloitte Consulting’s Government and Public Services (GPS), Deloitte
The Future of Regulation

Principles for regulating emerging technologies
How do regulators regulate emerging technologies?

How do regulators deploy the toolkit to enforce regulations?
What are the challenges

Policy challenges

- The pacing problem
- Disruptive business models
- Data, digital privacy and security
- AI-based challenges
The Four Stages

Encourage innovation and protect customers by addressing these four critical questions:

Stage #1 Pre-regulatory
What do we have now?

Stage #2 Testing and evaluation
When to regulate?

Stage #3 Regulatory approach
How to regulate?

Stage #4 Revisit
What has changed?

The regulatory spectrum:
- Minimum government regulation
- Light precautionary regulation
- Strong precautionary regulation

Technologies:
- Blockchain
- Artificial Intelligence
- Ridesharing
- Drones

Data Privacy

Autonomous vehicles

Artificial Intelligence

Ridesharing

Blockchain

Drones

The regulatory spectrum
How can regulators address these challenges?

Principles of the Future of Regulation

1. **Adaptive regulation**
 - Shift from “regulate and forget” to a responsive, iterative approach

2. **Regulatory sandboxes**
 - Prototype and test new approaches by creating sandboxes and accelerators

3. **Outcome-based regulation**
 - Focus on results and performance rather than form

4. **Risk-weighted regulation**
 - Shift from one-size-fits-all regulation to a data-driven, segmented approach

5. **Collaborative regulation**
 - Align regulation nationally and internationally by engaging a broader set of players across the ecosystem
Map of fintech regulatory sandboxes
How do regulators regulate emerging technologies?

How do regulators deploy the toolkit for delivery and operations?
<table>
<thead>
<tr>
<th>Business Tools</th>
<th>Technology Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandboxes</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>Crowdsourcing</td>
<td>Blockchain</td>
</tr>
<tr>
<td>Nudges</td>
<td>Unmanned air vehicles</td>
</tr>
<tr>
<td>Customer experience toolkit</td>
<td>Big data & analytics</td>
</tr>
<tr>
<td></td>
<td>Augmented Reality</td>
</tr>
</tbody>
</table>
Utilizing new tools to make regulation more effective

Data Analytics Group of Monetary Authority of Singapore developed an algorithm that analyzes reports and trading account activities to identify suspicious transactions.
What we found using Natural Language Processing (NLP) to analyze 195,659 sections of the U.S. 2016 Code of Federal Regulations (CFR)...

- 60 years is the time it would take to read CFR cover to cover in a detailed way.
- 20 years is how old on average CFR sections are.
- 10% of all CFR general categories (known as CFR parts) have not been updated since the 1980’s.
- 14% (or 26405) sections were produced in 1970s or before.
- 22.5% or (44,041 sections) are perfect or close to perfect duplicates of other sections in the CFR.

Contact

W. Bruce Chew
Federal Research Leader,
Deloitte Center for Government Insights
brchew@deloitte.com
Disclaimer

This publication contains general information only and Deloitte is not, by means of this publication, rendering accounting, business, financial, investment, legal, tax, or other professional advice or services. This publication is not a substitute for such professional advice or services, nor should it be used as a basis for any decision or action that may affect your business. Before making any decision or taking any action that may affect your business, you should consult a qualified professional advisor. Deloitte shall not be responsible for any loss sustained by any person who relies on this publication.

About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee ("DTTL"), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities. DTTL (also referred to as “Deloitte Global”) does not provide services to clients. Please see www.deloitte.com/about for a more detailed description of DTTL and its member firms.

This communication is for internal distribution and use only among personnel of Deloitte Touche Tohmatsu Limited, its member firms, and their related entities (collectively, the “Deloitte network”). None of the Deloitte network shall be responsible for any loss whatsoever sustained by any person who relies on this communication.

© 2018. For information, contact Deloitte Touche Tohmatsu Limited
Ms. Kirsty GOGAN
Co-Founder, TerraPraxis, and Managing Partner of LucidCatalyst, Chair of the UK Government’s Nuclear Innovation Research and Advisory Board (NIRAB) Cost Reduction Working Group, and Co-Founder Energy for Humanity (EFH)
INNOVATION FOR CLIMATE

ENERGY INNOVATION FOR A PROSPEROUS PLANET

December 2020
Designing for Otherwise Unsolved Parts of the Decarbonisation Challenge
Stated Policies Scenario: World Energy by Source (IEA 2018)

- Gas-fired power plants
- Gas for industry
- Coal-fired power plants
- Liquid fossil fuels
This is What We Need to Do

- Repower all coal plants
- Replace flexible gas plants
- Replace gas for industrial heat
- Replace liquid fossil fuels
- While growing the energy system to supply the developing world

This is the challenge that regulators need to focus on
Our Climate Solutions need to be Impossible Burgers

- Drop-in substitute: cost & performance
- Leverages existing infrastructure
- Cost-competitive
- Not dependent on behaviour change
- Scale applicable to market size
- Rapidly deployable
- **Define product requirements to license 1,000 by 2050**
TerraPraxis: Leading the Change
Impossible Burgers for Climate—Transformative Innovations

Coal Plant Heat Source – Electricity Market

Flexible Generator – Electricity Market

Hydrogen Cogeneration – Electricity & Fuels

Hydrogen/Synfuel Gigafactory – Fuels Market
Addressing Remaining Carbon Based Fuels
Pathway to Low Cost

Project ➔ Program ➔ Product

FOAK Project

Non-FOAK

Example EPRs/Vogtle

Example Sizewell C?

Example Barakah/China

CapEx $/KWe

Restart Nuclear Industry
Supply Chain Qualification
Licensing
Capacity Building

Reduced Design Costs
Reduced Prices (more volume)
Schedule Optimization
Skilled Workforce
Optimized Sequencing
Competitive Supply Chain

Designed for Manufacture and Assembly
Optimized/Reduced Direct Costs
High Productivity Manufacturing/Delivery
Short Construction Schedule

Designed for Manufacture and Assembly
Optimized/Reduced Direct Costs
High Productivity Manufacturing/Delivery
Short Construction Schedule

Competitive Supply Chain
Optimized Sequencing
Skilled Workforce
Schedule Optimization
Reduced Prices (more volume)
Reduced Design Costs
Licensing
Supply Chain Qualification
Restart Nuclear Industry

Non-FOAK

Example Sizewell C?

Example Barakah/China
Flexible Generation (Inspired by ARPA-E report)

Nuclear island is separated from the power island via thermal energy storage system.
Cost-Competitive Coal Plant Repowering

- Standalone Advanced Nuclear Plant
- Scope reduction from reuse of parts of coal plant
- Standardization and optimized delivery
- Operating cost of coal plant

$ CapEx
Benefits

- Not having to replace coal plants with new projects elsewhere
- Clean energy transition can be accomplished with high confidence
- Total amount of investment and investment per year decrease
- Reduces risk to the energy transition
- Preserve tax base for rural communities
 - KY communities have had their tax base go from $15M to $1M
- Environmental Justice
- Enables just transition
- Could be a source for bipartisanship
- GOP-friendly climate strategy
ENERGY INNOVATION FOR A PROSPEROUS PLANET

Kirsty Gogan
kirsty.gogan@terrapraxis.org

Eric Ingersoll
eric.ingersoll@terrapraxis.org
MULTI-SECTOR WORKSHOP ON INNOVATIVE REGULATION: Challenges and benefits of harmonizing the licensing process for emerging technologies

Session 6 - Harmonisation of licensing: beyond regulators and licensees, how do the other stakeholders view the situation?

Ms. Marie-Françoise RENARD-GONDINET
Offshore Sales and Marketing Director, BUREAU VERITAS

Mr. Denis BOURGUIGNON
Nuclear Development and Technical Manager, BUREAU VERITAS
Involvement of Classification in Floating Power Solutions

NEA Workshop
14-18 December 2020

Marie-Françoise RENARD
Offshore Commercial Director
Bureau Veritas: The TIC Company
Unrivalled global presence and service portfolio

7,400 employees
NORTH AMERICA

17,800 employees
EUROPE

6,700 employees
AFRICA & MIDDLE EAST

31,200 employees
ASIA PACIFIC

5.1 bn€
2019 revenue

78,000+
Employees
Bureau Veritas Main Nuclear References

Integrated services for global nuclear projects
CLASS: A UNIQUE TIC BUSINESS
With strong technical background & regulatory requirements

THE ROOTS OF BV
190 years of history

180 OFFICES 12 MARINE CENTRES
WORLDWIDE NETWORK
+100 COUNTRIES 2,650 EMPLOYEES

2 MAIN BUSINESSES
CAPEX: NEW BUILDINGS (& equipment)
OPEX: SHIPS IN SERVICE
CYCLICAL GROWING

UNIQUE TIC SCHEMES WITH OWN RULES

IACS
CLASSIFICATION
BV 1 of 12 SOCIETIES

IMO
STATUTORY
BV RECOGNIZED ORG. BY 160 FLAGS

VALUE-ADDED & ASSET-LIGHT ACTIVITIES

DESIGN REVIEW
ONSITE EXPERT SURVEYOR

VISUAL SURVEY
DESKTOP SKILLED ENGINEER

STRONG TECHNICAL/R&D & OPERATIONAL GOVERNANCE IN HO
~300 FTEs
Class: Diversified fleet with some strong technical leadership

MSC Fantasia (cruise ship)

CMA-CGM Saint-Exupéry (20'000 TEU container ship)

Yamal Nikolay Zubov (Arctic LNG carrier)

Jan de Nul (Wind Installation & Transport Vessel)

Strong track record in high tech ships (cruise, gas, container, Offshore)

FLEET DATA IN GRT, AS OF 09/2020

Dry Bulk 34% 21%

Tanker 16%

Container 7% 7%

Gas 6%

Non-cargo 5%

Dry cargo 3%

Offshore

Passenger

Source: Clarksons Research, M&O Operations
The objective of the Classification is to verify the structural strength and integrity of essential parts of the unit’s hull and its appendages, the reliability and function of the propulsion and steering systems, power generation and those other features and auxiliary systems which have been built into the unit in order to maintain essential services on board.....

- Plan & document approval based on Bureau Veritas or other Rules & Standards
- Independent Analyses
- Appraisal of the design of materials and equipment used in the construction
- Survey during construction at shipyards and attendance at tests and trials
- In-Service Surveys
- Life Extension

Issuance of Final CLASS CERTIFICATE
Around 130 Flag Administrations have recognized Bureau Veritas to perform surveys and issue the appropriate statutory certificates on their behalf.

They delegate to Bureau Veritas part of their authority related to verification of the implementation of national and international regulations dealing with marine safety and environmental protection, including such international conventions.

Typical statutory certificates:
- MARPOL 73/78 (International Convention for the Prevention of Pollution from Ships), as amended:
- ILLC 66 (International Load Lines Convention), as amended.
- IMO MODU 2009 (Code for the Construction and Equipment of Mobile Offshore Drilling Units), as far as reasonable (amended) – Life Save Appliances
- International Regulation for TONNAGE Measurements of Ships, 1969.
OVERVIEW OF THE USUAL APPROVAL PROCESS

Project phases

- Concept
- Concept Design
- FEED
- Detailed Design
- Construction Installation
- In-Service

Approval type

- Concept Approval
 - Basic approval / AIP
 - Concept Design approval
 - Final concept approval
 - Qualification of unproven technology

- Classification Certification

- In service survey

BV Certificates

- Concept / FEED Approval Certificate(s)
- Class Certificate
- Maintenance of Certificates
ONE EXAMPLE: SMALL SCALE LNG MARKET

FS(R)U
- Capacity: 2 MTPA
- Storage: 28k m³
- CCS: Type C
- Regasification: ≈ 30 installed, ≈ 14 ordered, ≈ 45 possible

FLNG
- Capacity: 0.5 MTPA
- Storage: 16.1k m³
- CCS: Type C
- Liquefaction: ≈ 5 installed, ≈ 3 ordered, ≈ 20 possible

Power barges
- Capacity: 200MW
- Storage: 40k m³
- CCS: Membrane
- Power Generation + Regasification
- Many concepts
Additional Class notation **POWERGEN (xxx)**

- **Depending on the fuel used by the power plant:**
 - POWERGEN (Oil)
 - POWERGEN (NG)
 - POWERGEN (Dual fuel)

Additional Class notation: **POWERGEN (NG)**

- **Scope:**
 - Safety studies: HAZID/HAZOP
 - The interface between power plant and support unit
 - The steel structure of the power plant
 - The arrangement of the unit
 - The piping process safety features and mechanical integrity
 - Arrangement of monitoring and control
 - The fire safety features
 - Arrangement of electrical installations

Service notation: **FSRU (NR645)**

- **For FSRU:**
 - Interface with LNG storage and regasification
Risk Analysis Scope

Risk analysis
IGC Code Chapter 1, [1.1.10]

“When a ship is intended to operate for periods at a fixed location in a re-gasification and gas discharge mode or a gas receiving, processing, liquefaction and storage mode, additional requirements shall be established based on the principles of the IGC Code as well as recognized standards that address specific risks not envisaged by it.”

Such risks may include, but not be limited to:

- fire and explosion;
- evacuation;
- extension of hazardous areas;
- pressurized gas discharge to shore;
- high-pressure gas venting;
- process upset conditions;
- storage and handling of flammable refrigerants;
- continuous presence of liquid and vapour cargo outside the cargo containment system;
- tank over-pressure and under-pressure;
- ship-to-ship transfer of liquid cargo; and
- collision risk during berthing manoeuvres.
Floating Power Ships/Barges (LNG) Concepts / Approval in Principles

→ DSME FSPP - 200MW
 ▪ Type: FSRU (Barge)
 ▪ Storage: Membrane 88k

→ STX FEGaSus – 500 MW
 ▪ Type: FSRU (Barge)
 ▪ Storage: Membrane 270k

→ WISON W-FSRP
 ▪ Type: Barge
 ▪ Storage: Type C (or B)
 ▪ 50MW - 800MW

→ Gravifloat (Sembcorp Marine, ENGIE)
 ▪ Type: Barge
 ▪ Storage: LNG
 ▪ 10MW - 300MW

→ MODEC Concepts
 ▪ Type: Barge & Ship Shape

→ DSEC FLPP – L200 / 200 MW
 ▪ Type: Barge
 ▪ Storage: membrane 135k
Floating Power Ships/Barges
Reference of BV Class Units – Gas or Dual Fuel Projects

→ HUMMEL
- Year Built: 2014
- Type: LNG-Powered Electric Supply Barge
- Storage: LNG
- 7.5MW

→ KARADENIZ & MOL UNITS
Several units already delivered some still to be converted to Dual Fuel – NR.655
- Storage and Regas of LNG: Conversion of LNG carriers (1 ongoing in Singapore with MOL) - NR.645
from Nuclear-Powered Icebrakers:

Nuclear-powered icebreakers are much more powerful than their diesel-powered counterparts. On-going Class: 2 nuclear reactors isolated in a compartment located in the mid part (total output of the power: 45MW). The nuclear energy served 4 steam turbines which supply all the power including normal drive and other normal electric load. This unit can navigate in South Pole and North Pole area. Ship shall serve as icebreaking, pilot navigation for other vessels, sea support and supply.

to Nuclear Power Barges

The floating nuclear power station is a non-self propelled vessel. The vessel is providing up to 70 MW of electricity or 300 MW of heat, or cogeneration of electricity and heat for district heating, enough for a city with a population of 200,000 people. Because of its ability to float and be assembled in extreme weather conditions, it can provide heat and power to areas that do not have easy access to these amenities because of their geographic location. It could also be modified as a desalination plant producing 240,000 cubic meters of fresh water a day.
Similarities – Differences

Similarities:
- High risk sector
- International Environment
- Need to have independent and accredited parties
- 3rd party Scope and objectives => limitation of the risks for the People and Environment
- Process gates
 - Generic Design Assessment / Licence / Maintain of the Licence **Versus** Concept approval / Classification / In Service follow-up
 - Design assessment + manufacturing follow-up + assembly / Commissioning
- Location
 - Power Barges as SMR could end up in locations not known at the concept stage

Differences:
- Responsibilities
 - National Nuclear Regulator **Versus** Bureau Veritas & National Statutory Bodies
- Referential
 - National nuclear regulations completed by regional regulations (such as European, …) for conventional equipment **Versus** Bureau Veritas referential + International standards
 - Construction code and standards specific to the technology
Thank you
Ms. Kathryn MARTIN
Director, Asia & US, Access Partnership
OECD/NEA - Innovative Regulation in the ICT Sector

Kathryn Martin
Access Partnership
Washington, DC
Key Takeaway 1:
The evolution of ICT over the past few decades has been driven by privatization, liberalization, public-private convergence of services and multi-stakeholder engagement.

Key Takeaway 2:
• International Telecommunication Union founded in 1865 and incorporated as a United Nations specialized agency (1947).
• Diverse membership: 193 member countries and over 900 companies, universities, research institutes and international and regional organizations.
• Promotes the shared use of global spectrum, assignment of satellite orbits, development of technical network standards and promotes telecommunications.
• Space and satellites: Agreements have led to vibrant satellite industry
• Supports Development of Internet and broadband connectivity worldwide
World Radiocommunications Conferences

- Review and revise the Radio Regulations, Treaty Document
- Adopts spectrum allocations, satellite regulatory procedures, orbital allotment plans
- Normally held every 4 years, with the agenda set by previous conference
- Decisions taken based on studies undertaken by ITU study groups
- Typically more than 3000 participants from 165 Member States
 - More than 100 observers from ITU Sector Members
Diversity of WRC Participation

• Government delegates
• Industry Observers
• Academia Observers
• Representatives from international/regional organizations
Key Takeaway 1:
Satellites offer useful example of regulated industry. Regular, centralized collaboration among countries through the ITU is critical to strengthening cooperation among policymakers, regulators, manufacturers, launchers, operators and academia to avoid interference and promote innovation.

Key Takeaway 2:
- Regulators must factor ongoing and planned investments in satellite innovations, such as high-throughput satellites (HTS), non-geostationary fixed-satellite service (NGSO FSS) satellites, nanosatellites
- Protection and sharing of finite satellite spectrum resources critical for managing long-term problems due to lower barriers to entry (e.g. competition issues, lack of compliance with international standards, issues with deorbiting and space debris)
Moving Forward

Key Takeaways

- Success requires collaboration among industry, policymakers, and regulators.
- Centralizing the regulatory process helps with standardization, compliance and quality control, harmonizing equipment for economies of scale in markets.
- Role of regional bodies is critical to ensuring that global solutions are applicable at local level.
- Voice of industry is vital to ensuring that regulatory approaches are appropriate and conducive to innovation.
Mr. Jean-Jacques DOREAU
Executive Manager of the Agriculture Insurance Market,
ALLIANZ France
OCDE MULTI-SECTOR WORKSHOP ON INNOVATIVE REGULATION

Handling of Innovation imposed to the Insurers by the Regulator
GENERAL INSURANCE REGULATION Scheme

The European Insurance and Occupational Pensions Authorities (EIOPA) has the mission to:

- Enhance supervisory convergence amongst national Authorities through a process called « comply or explain »
- Strengthen consumer protection
- Preserve financial stability for the benefit of economies, business and EU citizens

EIOPA is an independent advisory body to the European Commission, the European Parliament and the Council of the European Union, that carries specific legal, technical or scientific tasks and giving evidence-based advice. It helps shape informed policies and laws at EU and national levels. EIOPA is one of three European Supervisory Authorities. The other two are the European Banking Authority (EBA) and the European Securities and Markets Authority (ESMA).

Since 2010, the French Autorité de Contrôle Prudentiel et de Résolution (ACPR) is a integrated Institution of the French Central Bank in charge of the supervision of French insurers and bankers

SOLVANCY II
Since January 2016, the EU (re) insurers are governed by the Solvency II regulatory regime. Gradual reviews have been undertaken since then to ensure that the regime remains fit for purpose. EIOPA supports the ex-post evaluation of the regulatory regime as an important element of better regulation by contributing to a rigorous, evidence-based and transparent review of Solvency II.
Pilar I: Quantitative Requirements to cover the capability of an insurer to demonstrate it has adequate financial resources in place to meet all its liabilities and consists of the quantitative requirements like the amount of capital an insurer should hold.

Pillar II: Requirements for the Governance and Risk Management of Insurers to build a framework that identify and measure the risk against which capital must be held as well as for the effective supervision of insurers.

Pillar 2 is the most comprehensive of all three pillars taking the Own Risk & Solvency Assessment (ORSA) in consideration. The ORSA can be defined as “the entirety of the processes and procedures employed to identify, assess, monitor, manage, and report the short and long term risks a reinsurance undertaking faces or may face and to determine the own funds necessary to ensure that overall solvency needs are met at all times”. It is thus the process by which the company demonstrates how the SCR will continue to be met whilst executing its business plan.

Pillar III: Qualitative and Quantitative Requirements
Example: ACPR analysis of an innovation in CROPS Insurance

Existing Warranty Scheme for CROPS Insurance:
- Historical contract (since 1892 for La Rurale): Hail + Storm
- Since 2010: additional package Frost + Drought + Excess of Water
- Trigger for coverage: loss of historical YIELD following climatic Perils

New innovative Scheme tested in 2018:
- Coverage of Loss of revenue due to Price decrease for main quoted cereal (ex Milling Future)

Analysis made by ACPR in 2019:
- No correlation between Climatic Coverage and Price Coverage
- A specific Financial Insurance agreement would be necessary to continue experiment
- Formal Warning issued by ACPR to the company
- Immediate stop of activity
MULTI-SECTOR WORKSHOP ON INNOVATIVE REGULATION: Challenges and benefits of harmonizing the licensing process for emerging technologies

Session 6 - Harmonisation of licensing: beyond regulators and licensees, how do the other stakeholders view the situation?
Session 7

Recommendations to the nuclear sector, the path forward
Session Moderator

Mr. William D. MAGWOOD, IV
Director-General
OECD Nuclear Energy Agency (NEA)
Session 7 - Recommendations to the nuclear sector, the path forward
Mr. Mark FOY
Chief Nuclear Inspector for the Office for Nuclear Regulation in the UK
Mr. Christian SCHLEIFER-HEINGÄRTNER
Secretary General, EUROCAE
MULTI-SECTOR WORKSHOP ON INNOVATIVE REGULATION: Challenges and benefits of harmonizing the licensing process for emerging technologies
Session 7 - Recommendations to the nuclear sector, the path forward

Dr. Jean-Christophe NIEL
Director General of Institute for Radiological Protection and Nuclear Safety, France, Chair of the OECD NEA Committee on the Safety of Nuclear Installations
MULTI-SECTOR WORKSHOP ON INNOVATIVE REGULATION: Challenges and benefits of harmonizing the licensing process for emerging technologies

Session 7 - Recommendations to the nuclear sector, the path forward

Dr. Harald ENZMANN
Chair of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA), Head of Section "European and International Affairs" at the German Federal Institute for Drugs and Medical Devices
Mr. Bruce CHEW

Federal Research Leader for Deloitte’s Center for Government Insights (DCGI) and Managing Director in Deloitte Consulting’s Government and Public Services (GPS), Deloitte
Mr. Ramzi JAMMAL
Executive Vice-President and Chief Regulatory Operations Officer Regulatory Operations Branch, Canadian Nuclear Safety Commission (CNSC)
Mr. Ramzi Jammal
Executive Vice-President and
Chief Regulatory Operations Officer

December 18th, 2020

Workshop Observations
Lessons Learned – Harmonization

• Harmonization requires the willingness to be open and collaborative
• Regulatory frameworks must adapt in response to ongoing innovation
• Harmonization of standards and guidance provide predictability and clarity for industry and regulators
• International regulations and guidance development should be all-inclusive to complement prescriptive regulations and/or binding conventions
• Regulatory harmonization needs to look beyond technology design to include supporting infrastructure
Lessons Learned - International Collaboration

• International collaboration is more effective in smaller member states groups that focus on topics of mutual interest
• Cross-functional working groups that including regulators, industry and the public deliver more valuable outcomes
• A dialogue need to be established between regulators and innovators
• Building mutual trust within the international community can enable cooperation on a global scale

Collaboration must also include the public
Challenges for Consideration

I. Risked informed decision-making that allows for innovation and technical advancement

II. Leveraging information and lessons learned

III. Balancing harmonization and sovereignty

IV. Ensuring public trust
Challenge #1: Risked informed decision-making that allows for safe innovation and technical advancement

• Adopt a flexible performance-based regulatory framework to meet the safety objectives of existing conventions

• Government support at the policy level can help regulators establish risk-informed harmonization processes which will:
 ➢ eliminate duplication
 ➢ increase efficiencies in support of the licensing process
Challenge #2: Leveraging information and lessons learned

• Success in global harmonization requires substantial international commitment involving numerous players

• Consulting with stakeholders is a central part of the process when creating industry standards

• International organizations, such as NEA and IAEA, should conduct early engagement activities with industries, governments, and NGOs to highlight the benefits of harmonization
Challenge #3: Balancing harmonization and sovereignty

- Harmonization did not take away national regulatory sovereignty
- Early involvement of technical experts from regulators, industry and government policy-makers is key to establishing a regulatory framework adaptive to innovative technology
- Working through CSS in a technology-neutral manner commensurate with risk helps to establish international standards and guidance
Challenge #4: Ensuring public trust

• Everyone has a role to play in fostering public trust
• Engage early, encourage openness and transparency in the process
• Communicate the benefits of emerging technology to encourage public acceptability
• Create trust in the safety review process, make the safety basis publicly available to generate confidence
Start small and build

Step 1
Adopt performance or objective-based approaches that provides a flexible framework

Step 2
Incorporate risk-informed decision-making when regulating innovative technologies

Step 3
Leverage lessons learned and best practices from other sectors and international organizations

Step 4
Collaborate internationally

Step 5
Engage stakeholders early, often and be transparent to gain public trust
QUESTIONS FROM PARTICIPANTS

• Question 1
• Question 2
• Question 3
POLL
Closing remarks

Mr. William D. Magwood, IV
Director-General
OECD Nuclear Energy Agency (NEA)

Ms. Rumina Velshi
President and Chief Executive Officer
Canadian Nuclear Safety Commission (CNSC)
Closing remarks

Ms. Rumina VELSHI
President and Chief Executive Officer
Canadian Nuclear Safety Commission (CNSC)
Closing remarks

Mr. William D. MAGWOOD, IV
Director-General
OECD Nuclear Energy Agency (NEA)
MULTI-SECTOR WORKSHOP ON INNOVATIVE REGULATION

Challenges and benefits of harmonising the licensing process for emerging technologies

Thank you for your participation!