CIRCLE

Costs of Inaction and Resource scarcity: Consequences for Long-term Economic growth

From cost of control to cost of inaction: Overview of the CIRCLE project

OECD Nuclear Energy Agency (OECD NEA) International Workshop

Paris, 20 January 2016

Olivier Durand-Lasserve (OECD/ENV - IEA/STO)

Work coordinated by Rob Dellink, Jean Chateau and Elisa Lanzi (OECD/ENV)

5

		ntroc	duction	to	CIRCLE	
--	--	-------	---------	----	--------	--

- 2 Economic consequences of Climate Change
- 3 Economic cost of air pollution
- 4 Elements on water scarcity for power generation
 - Discussion

Environmental outlook to 2050

-Regional & sectoral GHG mitigation costs: impact on GDP, sectoral value added, real income

-Assessment with Computable General Equilibrium model (CGE) allows to account wide rage of reallocation mechanisms, input substitution, sectoral reallocation, change in international trade...

- CIRCLE project : Costs of Inaction and Resource scarcity: Consequences for Long-term Economic growth
- Aims to include the feedback of environnemental damages on economic growth
 - Regional and sectorial costs of inaction assess with CGE, based on collaboration with several expert groups
 - Use GDP as key indicator of economic growth
 - Qualitative assessment to complete the picture
 - Wide collection of damages are considered: climate change, land and water scarcity, air pollution

1	Introduction to CIRCLE
---	------------------------

Economic consequences of Climate Change

- 3 Economic cost of Air pollution
- 4 Elements on water scarcity for power generation

5 Discussion

- Aim: assess the economic consequences of climate change
- Until 2060, multi-sector, multi-region General Equilibrium production function approach: climate change affects drivers of growth
- After 2060, stylised Integrated Assessment Model approach
- Collaboration with several expert groups, incl. FEEM, CERE, NIES

Selected impacts of climate change

Included in the modelling

- Agriculture: yield changes for 8 crop sectors, and fisheries
- Coastal zones: capital and land losses due to sea level rise
- Health: diseases and labour productivity losses from heat stress
- Energy demand
- Tourism demand
- Capital damages from hurricanes

Stand-alone analysis

- Fatalities from heatwaves
- Urban damages from river floods
- Ecosystems: biodiversity (crude approximation)

Still not quantified

• Large-scale disruptive events, ...

Global GDP loss:

Source: ENV-Linkages calculations

1.0-3.3%

Regional cost of selected climate impacts

- 1. Almost all regions significant negative market and non-market impacts, plus downside risks
 - Global GDP cost 1.0-3.3% by 2060, 2-10% by 2100
 - Largest losses in Africa and Asia
 - Largest losses from health and agricultural impacts
 - Largest losses to capital and labour
 - Costs increase more than proportionately with temperature
- 2. Losses spread across economies
 - All sectors and regions are indirectly affected
- 3. Consequences are unavoidable and enduring
 - Emissions commit the world to long-lasting impacts

- 4. Ambitious adaptation and mitigation can reduce future impacts and limit risks
 - Ambitious policies can reduce macroeconomic costs by 2100 from 2-10% to 1-3%
 - Adaptation is important to ensure consequences of climate change remain limited
 - Ambitious global mitigation can help avoid half of the economic consequences and limit downside risks
 - Distribution of policy costs and benefits across regions and sectors will not be proportional (but both imply a shift towards more services)

		Introduction to CIRCLE
--	--	------------------------

- Economic consequences of Climate Change
- 3 Economic cost of Air pollution
 - Elements on water scarcity for power generation
- 5

4

Discussion

Local air pollution in CIRCLE: methodology

1. Projections Of Air Pollutant Emissions

2. Concentrations Of Air Pollutants

3. Impacts on Human Health (Hospital admissions, sick days, premature deaths...)

4. VALUATION

Market Impacts

- health expenditures
- labour productivity

Non-Market Impacts

- value of lives lost, using VSL
- costs of pain and suffering

5. Macroeconomic Impacts Of Air Pollution

(In ENV-Linkages)

5. Welfare Impacts Of Air Pollution

(Separately)

1	Introduction to CIRCLE
---	------------------------

- 2 Economic consequences of Climate Change
- 3 Economic cost of air pollution
 - Elements on water scarcity for power generation

Discussion

Power generation

- Hydroelectric & thermoelectric (TE) plants
- Mostly water withdrawal (not consumption)
- Limited power trade & need for stable supply

Fossil fuels

- Cons. & withdrawal for extraction & processing
- Fossil resources available become more water intensive (e.g. shale oil & gas)
- International trade (->virtual water trade)

Biofuels

- Water consumption, dep. types of crops
- Role of energy & env. policies
- International trade (->virtual water trade)

<u>Megatrends</u> Socioeconomic drivers	Power demand	Power supply & <u>transportation</u>
Population & GDP IT technologies Climate change	(+) quantity & quality of supply	-
T° increase Change in rainfall Seasonal variations Extreme events Uncertainty	 (+) cooling (-/+) pumping in agric) (-/+) annual load (-/+) peak load 	 (-) hydro, (-) TE (-/+) capacities (-) hydro, (-) TE capacities (+/-) seasonal H & (+ ?) grid security
Environmental policies		
Energy conservation Renewable (wind, sol) Efficiency standards Local air protection	(-) quantity	 (+) hydro, (-) TE dependence (-) dependence on TE (+) PG in less populated
Water policies		areas
TE plant cooling system standards		(-) TE dependence on water

Country level: ways to generate electricity with less water, example in the US

Reduced water withdrawal from thermoelectric generation:

- -Cooling technologies: phase out of once-through systems
- -Plant efficiency
- But stress at the sub-national level
- -South West US (DOE, 2012)
- -No disruption but power provided to final consumers at a higher cost
- Competition with other activities: urban demand, shale oil and gas,...

How to assess macroeconomic costs of water scarcity through power generation?

Cost for the power sector?

- PG technologies and water intakes
- Interconnections
- Response to water scarcity
- Uncertainty
- >Need for detailed power generation model

Cost for the whole economy?

- Production function approach?
- Cost of disruption (with VOLL)?
- Cost for reducing the risk of disruption?
- Opportunity cost of reduced future access?

>How to get these notions in ENV-Linkages?

Assessment at the global level? Water demand for energy (Davies et al; 2013, Kyle et al., 2012) but no macroeconomic cost

1		Introduction to CIRCLE
---	--	------------------------

- 2 Economic consequences of Climate Change
- 3 Economic cost of air pollution
- 4 Elements on water scarcity for power generation

Discussion

THANK YOU!

For more information: <u>www.oecd.org/environment/CIRCLE.htm</u> <u>www.oecd.org/environment/modelling</u> <u>olivier.durand-lasserve@oecd.org</u>

APPENDIX

Methodology for climate damages

- Collaboration with existing impact studies
 - Methodology largely based on the FEEM ICES model
 - Data for a subset of damages from sectoral EU projects, obtained with help of FEEM
 - Additional data from range of collaborators, incl. NIES, VU University Amsterdam, IIASA, IPTS-JRC
 - Data consistency on damages is ensured by choosing damages corresponding to an appropriate temperature pathway (no simple damage functions relating everything to global ΔT)
- Damages calculated in ENV-Linkages model to 2060
 - Autonomous adaptation takes place via sectoral adjustments and international trade
- Stylised calculations with AD-DICE to 2100
 - Baseline and damages to 2060 harmonised with ENV-Linkages

Regional results and uncertainty from climate sensitivity – year 2060

Source: ENV-Linkages calculations

Damages with policy controls

Source: Preliminary AD-DICE calculations

Sectoral damages and mitigation costs

Source: ENV-Linkages calculations

Global damages under optimal mitigation – alternative discounting rules

Howe local circumstances matter: Hotspots and bottlenecks

Europe France (IEA, 2012); Central Europe (Rübbelke and Vögele, 2011)

Australia: increased water withdrawal for power generation in water stressed areas (Smart and Aspinall, 2009)

China: Power generation in regions with water scarcity, adoption of dry cooling + (shale resources in water scarce areas) (IEA, 2012)

India: seasonal variations drought and heat waves create high demand and low supply (IEA, 2012; Bhattacharya and Mitra, 2013)

Sub Saharan Africa: uncertainty on water flows increases the cost of developing that hydro capacities (Cervigni et al 2015)