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A REVIEW OF BEST PRACTICES FOR MONTE CARLO CRITICALITY CALCULATIONS 

Forrest B. Brown 

Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA , fb m wn@!an!.gov 

Monte Carlo methods have been used to compute kef/ and the fundamental mode eigenfunction olcritical 
systems since the 1950s. While such calculations have become routine using standard codes such as MCN? and 
SCA LE/KENO, there still remain 3 concerns that must be addressed to perform calculations correctly: 
convergence of ke)j and the fission distribution, bias in k~(rand tally results, and bzas In statistics on tally results. 
This paper provides a review of the fundamental problems inherent in Monte Carlo criticality calculations. To 
provide guidance to practitioners, suggested best practices for aVOIding these problems are discussed and 
illustrated by examples. 

I. INTRODUCTION 

Monte Carlo methods have been used to compute keJfand the fundamental mode eigenfunct ion of critical 
systems since the 1950s [Refs. 1-4]. While such calculations have become routine using standard codes (e.g., 
MCNP [Ref. 5], SCALE/KENO [Ref. 6]), there remain 3 principal concerns that must be addressed to perform 
calculations correctly: 

1. Suffic ient initial cycles must be discarded prior to beginning the tallies , so that contamination of the 
resul ts by the initial source guess becomes negligible. 

2. Sufficient numbers of neutrons must be followed in each cycle so that bias in kef! and reaction rate tall ies 
becomes negligible. 

3. Bias in the statistics on kef/ and reaction rate talli es must be recognized and dealt with. 

Unfortunately, the user manuals and tutorials provided with standard Monte Carlo codes provide little or no 
discussion of these 3 concerns. Theoretical papers from the 1960s - 1980s do not provide practical examples 
showing the magnitude of the difficulties, and provide li tt le or no practical gu idance to code users. This paper 
provides a brief review of the 3 concerns, illustrating each with realistic practical examples. Guidance for users is 
offered as recommended "best practices." 

LA Criticality Calculations and the Power Method 

The k-eigenvalue tran sport equation in standard form 

[n . V + LT O= ,E)]'P(r ,E,n) = Sf 'P (r, E' "Q' )Ls(F,E' ~ E,n · Q' )dQ'dE' 

can be written as 
I 

(L + T )'-I' = S'fI + - . M'fI 
keJf 

and then rearranged to 

+ _1_ X(E) H vLrCr ,£ ' )'-1' (1, E',Q' )dQ' dE' 
keJf 4Jr 

(1) 

(2) 



1 _\ 1 
\f1 = - (L + T - S) M\f'=-F'l' 

kef! kef! 

(3) 

Equation (3) may be solved numerically using the standard power iteration method 5
,6 

\f (II+J) = _l_F\f (n) 
k(n) , 

cjr 

n=O,l, ... , given k(O) and I.J:'(U) 
elf 

(4) 

Most Monte Carlo codes use the standard power method for solving k-eigenva lue problems/ s, where each 
(outer) iterati n cycle corresponds to a single fission generation in the simulation, Given a fi ssion neutron source 
distribution and an estimate of kef!, single-generation random walks are carried out for a "batch" of neutrons to 
estimate a new kef! and source distribution. Iterations continue until both keJf and the source distrib ution have 
converged. After convergence of the power iterations, tallies of kefrand spatial reaction rates are accumulated. 

LB. Example Problem Descr iptions 

To illustrate the computational concerns and to provide guidance to practit ioners, 2 realist ic, practical 
prob lems are used: a detailed 2D quarter-core PWR model (Fig. I) and a 3D array of stee l cans filled with 
plutonium nitrate solution (Fig. 2). All of the calculations discussed below were performed with MCNP5 (version 
1.51) using the new ENDF/B-VII continuous-energy data libraries on a Mac Pro (dual quad-core Xeons, 8 cpus 
total). 

The PWR mode l has explicit representation of every fuel pin and water tube. This example is based on the 
specifi cations given by Nakagawa and Mori 9 for a 3D whole-core model. In the current 2D quarte r-core example, 
there are 48 lit fue l assemblies (each with a 17x 17 lattice arrangement), 12,738 fuel pins with cladding, and 1206 
v.. water tubes for control rods or detectors. The assemblies have enrichments of 2.1 %,2.6%, and 3.1 %. The 
dominance ratio for this problem was determined to be p=.96. 

The 2x3 array of steel cans containing plutonium nitrate solution is a simpli fied version of the problem 
described in Chapter 5 of the MC NP Criticality Primer1o• There are six stainless steel cylinders arranged in a 2x3 
array with a 10 cm separation between cyclinders. For simplicity, no external walls or features are included. 

H. CONVERGENCE OF THE POWER METHOD 

ILA Background 

Concerning the relative convergence of kefjand the fission source distribution during the power iteration 

process, jf the initial guess for \f'(O) is expanded in terms ofthe eigenvectors u
J 

of Eq. (3), substituted into Eq. (4), 

Fig. 1. 2D quarter-core PWR model, with 
detail shown fo r the center 1I4-assembly 

2 

Fig. 2. 2 x 3 array of steel cans filled 
with plutonium nitrate solution 



and rearranged with some straightforward algebra, then 

\fl(n+!) (r )=uo(r) + 2pn+l·u(F) + ... 
"0 I 

(5) 

where p is the dominance ratio (ktlko), ko and Uo are the fundamental mode eigenvalue (exact kejJ) and 

eigenfunction, kl and u
l 
are the fi rst higher mode eigenvalue and eigenfunction, and ao, aj, and &1 are constants 

determined by the expansion of the initial fission distribution. Eq. (5) shows that higher-mode noise in the fi ss ion 
distribution dies off as pn+I, while higher-mode noise in kefrdies off as pn(l_p). When the dominance ratio is close 

to I, ke.6' will converge sooner than the fission distribution due to the extra damping factor (l-p) which is close to 
O. Thus, it is ess ntial to monitor convergence of both the fission source distribution and k,/j, not just that of k~(I 

When calcul at ing kef I and the power distribution fo r a reactor system, the dominance rat io is the key parameter 
for determining the convergence rate of the standard power method I I . For systems with a high do minance ratio, 
laOs or 1000s of itcrations may be required before the method achieves convergence, while systems with a low 
dominance ratio may require only lOs or 1 OOs of it(;rations. 

The Shannon entropy of the fission source distribution, Hsrc [Refs. 12-14], has been shown to be an effective 
diagnostic measure for characterizing convergence of the fission source distribution. H,",c is computed by tallying 
the fractions of fi ssi on sites in a cycle on a coarse mesh (Pj ) and then evaluating 

H"c = -I~ ·ln2(P) (6) 
j 

Convergence of the power iteration process can be determined by examining plots of both kef! and the fission 
source distribution (using Shannon entropy) vs. cycle. Both should be converged before tall ies of k~O and reaction 
rates are begun . 

II.B Numerical Examples 

As discussed in Section II. A, the number of cycles required for convergence of kell and the fission source 
distribution depends on the dominance ratio for the problem and on the selection of the initial guess for the fi ssion 
source distribution. Problems with dominance ratios close to 1 require more cycles to converge. For a given 
prob lem, choosing the initial fission source distribution closer to the actual fundamental mode distribution reduces 
the number of cy cle required for convergence. 

For the quarter-core PWR example problem, Figure 3 shows the convergence behavior of both kej! and H,rc for 
several initial source guesses: a single point at the center of the center quarter-assembly, points at the cent rs of 
each quarter assembly along the problem diagonal, and a uniform source throughout the core reg ion. For the 2x3 
array of cans, Figure 4 shows the convergence behavior of both keff and Hsrc for several ini tia l source gu esses: a 
single point at the center of the solution in the front left can, points at the centers of the solution in each of the 
cans, and a uniform distri bution of source points in the solution in each of the cans. 

It can be seen in Figures 3 and 4 that p lots of keJ/ vs cycle are not always useful in assessing convergence for 
these 2 problems; kellconverges in only a few cycles. For Hsrc , source guesses with single points are the poorest 
cho ice, requiring 50 to 100 cycles to converge; source guesses at a number of single po ints are better, but sti ll not 
representative of the con verged source; source guesses distributed unifo rmly in fiss ionable regions are reasonably 
close to the conv erged so urces, and require about 40 cycles for th PWR problem to converge and only 5-10 
cycles for the array of cans to converge. Note that this behavior - kef! converging sooner than H <rc - is consistent 
with Eqs. (5) and the discussion in Section II.A. It should also be noted that the convergence behavior of kelT and 
Hsrc does not depend on the number of cycles run (N) or on the number of neu trons per cycle (!vIa). That is, 
running a problem with more neutrons per cycle does not cause a problem to converge faster. 
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-- Hue with initial source points uniform in core region 

ilh imli I oure p Inl r eli 

If."" oy...., .l. _ . ~ ..- .... .... -

Figure 3. Convergence plots of H,,,. and kef! for quarter-core PWR problem 

Hsrc with initial source points uniform in solution in aU cans 

lujj n n II 

H .'S# _~.l._ .. ~~ ... -

II.C. Best Practices 

For the ini tial source guess in a criticality calculation, choose a uniform dis tribution in all fissi onable regions 
of the problem. If only a one or a few source points are used, more cycles will be needed to assure convergence. 

For applications where only keifis sought, examine plots of keifvs. cycle to determine the proper number of 
cycles to discard before beginning the kefftally. For applications where local tall ies are requ ired (e.g., local 
reaction rates, fo il measurements, dose fields, fission distributions, etc.) in add ition to keff, examine plots of both 
kef! vs. cycle and Hm. vs. cycle to determine the proper number of cycles to discard before beginning the tallies. Be 
sure that fi nal production runs are made using at least that many discarded cycles; using fewer discarded cycles 
can bias the resu lts. 
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III. BIAS IN RESULTS FOR K EFF AND REACTION RATE DISTRIBUTIONS 

lILA. Background 

In the power iteration process for Monte Carlo, if a fixed number of neutrons Mo start a cy cle and are 
followed through a single fission generation, then the expected number of neutrons produced, M" is E[Md = 

kefr Mo. Before beginning the nex t cycle, the number of neutrons (or alternatively the total neutron weigh t) must be 
adjusted by the fac tor (Mol M,) to provide the correct normalization. However, renormalizing each cycle by 
dividing by a stochastic quantity (M,) has been shown to introduce a bias in both kerr and any Jocal tall ies or 
di stri butions I5

. '6 . The bias in kc./lhas been shown to be . 

(52 ~ 1 
M = __ k . Ir

j 
ex: -, (7) 

keJJ j=! lvl a 

where (5~ = population variance in k (computed assuming uncorrelated values of k for each cycle), and rJ = lag-J 

correlation coeffic ient between cycle values of k. (The rj are assumed to approach 0 for large J.) The biases in a 
tallied reaction rate or a component of a reaction rate distribution are more complicated, and may b pos itive or 
negative. 

The biases in keJJ and local tally results are independent of the number of cycles, N, but are proportional to 

liMo (due to the dependence on (5 2). Thus, bias in keoand local tallies can be reduced and effectively eliminated 

by running a suffi i nt number of neutrons in each individual cycle of the calculation. 

IlI.B. Numerical Examples 

As discussed in Section IILA, results for keO and reaction rate tally distributions exhibit a bias if the number of 
neutrons per cycle is chosen too small. The "rule-of-thumb" for experlenced Monte Carlo practi ti oners has been 
that lOs or 100s of neutrons per cycle would result in noticeable bias, while several I OOOs of neutro ns per cycle 
would be adequate. For the quarter-core P WR example, Figure 5 shows th computed values for kc11 us ing 500, 
1000,5000, 1 0000 , and 20000 neutrons per cycl e . For this problem it can be seen that using 500 neutrons per 
cycle results in a bias of about 30 pcm, and that using 5000 or more neutrons per cycle ef fectively eliminates the 
bias in ke(l 

Figure 6 shows the computed values for kejj for the array of cans usi ng 100,200,500, 1000. 5000, 10000, and 
20000 neutrons per cycle. For this problem it can be seen that using 100 or 200 neutrons per cycle results in a bias 
of about 200 pem, and that using 1000 or more neutrons per cycle effectively eliminates th bi as in kcff. Also 
shown in Figure 6 is the ke/J result (the green point) for the array of cans using 1000 neutrons per cy cle, but llsing 
an incorrec t number of discarded cycles. In that run, only 3 cycles were discarded before beginning the k'11 tall ies, 
rather than 25 cycles for the other runs . The bias introduced by beginning the tallies before convergence is 
significant. 

Table 1 shows the percent errors in the fission distribution tallies for each of the quarter-assemblies in the 
PWR problem for the MCNP5 calculation with 500 neutrons per cycle. The bias in the di stri bution shows a 
significant tilt, with the inner quarter-assemb ly fission rates low by up to 1.6% and the outer quarter-assembly 
fission rates high by up to 3.2%. (The reference for detenn ining the errors in the quarter-assembly fi ss ion rates 
was the ensemble-average of the mesh tallies for 25 independent Me P5 calculations using 25 M active neu trons 
each and 20,000 neutrons per cycle.) The bias is significantly larger than the uncertainties on the quarter-assembly 
fission rates. The biases in the fission distribution are smaller when 1000 neutrons per cycle are used , and smaller 
still with 5,000 or 10,000 neutrons per cycle. Figure 7 is a plot of the fission ta ll ies in the quarter-assemblies along 
the diagona l of the problem, showing how the biases in the fission tallies are reduced as the number of neutrons 
per cycle is increased. 
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1II.C. Best Practices 

It is recommended that 1000s of neutrons/cycle be used for all calculations. For large reactor or storage vault 
problems, 10,000 or more neutrons/cycle is preferred. Problems should never be run using lOs or 100s of 
neutrons/cycle; that would introduce significant bias in both k c.1.l and any local talli s. 

IV. BIAS [N UNCERTAINTIES FOR K EFF A:"ID R EACTION RATE DISTRIBUTIONS 

IV.A. Background 

The power iteration process used to solve Monte Carlo eigenvalue calculations is based on a generation 
model, where next-generation fission neutron sites produced in the CUITent cycle are used as the start ing locations 
for the next cycle . It i clear on physical grounds that there is always some spatial corre lation between the fission 
neutron start ing sites in successive cycles (or generations), and that this correlation will be pos itive. For problems 
with a small dominance ratio, the correlation effects may be significant fo r only a fe w cycles; for prob lems with a 
large dominance ratio, correlatIOn effects may persist for dozens or hundreds of cycles 17. While such correlation 

= ~ 

l.ll$1S0S1 

1.295<10 

N = # cycles 
M = neutrons/cycle f 1 M = 1 0000 

IM:t,:'~ 
N· M = constant for all calculations 

1.29495 

1 .29490 .. .. .. 
1.29485 

1.294110 

1.2IM75 
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1.290465 
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-·--f .. 

1.2946 0 
0 .0000 0 .0005 0 .0010 O .OQ 1~ 0.0020 
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Figure 5. Keffvs 11M for PWR example, M =neutrons/cycle 

, .... 
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.... -

~ . 
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, ... 
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, 203 cycles 

Discard 3 cycles 
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Figure 6. Keff vs 11M for array of cans example, 1\'1 =neutrons/cyc\e 
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Table 1. Percent errors in quarter-assembly fission rates for MCNP 
calculation for PWR-2D problem using 500 neutrons/cycle 

0.0 -0.5 -0. 6 0.2 -0.3 0.5 0.8 

-0.2 -0.7 -0.8 0.1 0.3 0.7 0.6 

-0.5 -0.7 -0.7 0.0 0.3 0.7 1.0 1.3 1.2 1.6 2.0 

-0. 1 -0.7 -0.8 0.2 0.3 0.8 1.1 1.2 1.2 1.3 2 .4 

-0 .4 -0.6 -0.5 0.0 -0.1 0.2 0.7 0.6 1.4 2.0 1.9 2.7 3.2 

-0.7 -0.9 -0.8 0.4 0.2 0.5 0.4 1.0 1.2 1.6 2.0 1.6 2.6 

-0.6 -0.3 -0. 7 0.6 -0.6 0.3 0.8 1.1 1.2 1.5 1.1 1.7 1.8 

-0.5 -0.8 -1.0 0.8 -0.5 0.2 0.8 0.9 1.2 1.2 1.4 1.3 1.9 

-0.5 -0.9 -0.8 1.0 -0.6 0.2 0.2 0.6 0.9 l.l 0. 8 0 .7 1.1 0 .9 l.5 

-0.9 -0.9 -1.1 1.0 -0.9 0 .1 0.2 0.6 0. 8 0.6 0.6 0 .6 1.3 1.2 1.1 

-1.2 - 1.3-1.2 1.0 -0.6 0.5 -0.3 0.2 0.9 0.7 1.1 0 .9 IJ 1.2 I.! 

- 1.3 - 1.5 -1.0 0.9 -0.7 0.5 -0.6 0.3 0.4 0.5 1.3 1.4 2.1 1.9 1.6 

- 1.7 - 1.5-1.1 1.1 -0.6 0.5 -0.2 0.1 0. 3 0.6 1.0 1.7 2.0 2.1 1.9 

- 1.5 - 1.5 -1 .4 1.0 -l.l 0.8 0.0 0.1 0.3 0.4 1.0 1.0 1. 5 3.1 2.3 

-1.6 1.6-1.2 1.2 -0.6 0.7 -0.4 0.2 0.1 0.2 0. 5 1.6 2.1 2.4 2.3 

RMS error = J.l % 
MCNP std deviations: .1 % - .3% 

True std deviations: .3% - .8% 

does not affect the average resu lts for kejrand local tallies, it can produce signi ficant errors in tbe computed 
uncertainties ' 5,I618. Monte Carlo codes such as M CNP and SCA LE/KENO ignore inter-cycle correlation when 
comput ing statistics. That is, the codes assume that the individual cycles are independent and ignore correlation. 
As a result, the codes calculate uncertainties that are too small. For N active cycles, the codes will compute for 
tally X (\ here X may be kef!' a tallied reaction rate, or a component of a reaction rate distribu tion) a mean result 
and standard deviation given by: 

_ 1 N 
X=_· "' X 

N £... n' 
n==! 

(8) 

The true standard deviation, accounting for inter-cycle correlation, is then given for large l'.f by: 

,,'"" ~ ,, ~ . JI + 2· "" r (9) x x £... j 

j=! 

where t'j = lag-J correlation coefficient between cycle values, Xj. (The rj are assumed to approach 0 fo r large J.) 
Due to tbe posi tive inter-cycle correlation, the signi fi cant values of rj are positive, and the bias in the computed 

value of a x is negative: cr x < cr';". It will be demonstrated in Section 3 that the computed uncertainties can 

be too small by factors of 2-5 for local tallies in fission rates in realistic problems. It must be emphas ized that the 
underprediction errors in uncertainties are present regardless of the number of neutrons per cycle (Mo) or the 
number of active cycles run (N); the errors in uncertainties are not reduced by running more cycles or more 
neutrons per cycle. 
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IV.B. Numerical Results 

Figure 7. Percent error in fi ssion rates along diagonal, 

M:500 

M=1000 

M:5000 

M",10000 

for quarter-core PWR problem (M = neutrons/cycle) 

As discu~s ed in Sec tion IV.A, the uncertainties computed for ke17 and reaction rate tally distributions exhibit a 
bias due to inter-cycle correlation effects that are neglected when performing the Monte Carlo code tallies. The 
computed uncertainti es are always smaller than the true uncertainties for a tally, regardless of the nu mber of 
cycles ru n or the number of neutrons per cycle. For the quarter-core PWR problem, Table 2 gives the ratios of the 
true uncertainty to the MCNP5-calculated uncertainty for each of the quarter-assembly fission rate tall ies . For thi s 
problem, the true uncertai nties were calculated by running 25 independent MCNP5 calculations, and then 
computing the statistics directly from the ensemble of results 18. 

It can be seen from Table 2 that the MCNP5-calculated uncertainties are 1.7 to 4.7 times smaller than the true 
uncertain ties, and 3.1 times smaller than the true uncertainties on average. This is a very significant 
underprediction bias - in order to reduce the true uncertainties to a specified value, about 10 ti mes as many 
neutrons must be ru n as indicated by the MCNP5-computed uncertainties. For problems with dominance ratios 
even closer to 1, the underprediction bias in uncertainties may be much larger; for problems with smaller 
dominance ratios, the bias should be smaller. 

IV.C. Best Practices 

At present, there is no easy means of overcoming the underprediction bias in the computed uncertainties from 
Montc Carlo criticality calculations. Wh ile there is evidence that modifications to the iteration procedure, such as 
the superh istory method in MONK [Ref. 16] and Wielandt's method under development for MCNPS [Ref 19,20J 
can reduce or eliminate the underprediction bias in uncertainties, these methods are not available yet to general 
MCN P5 or SCALE/KENO u ers. A brute-force method for assessing the true uncertainties can be carried out: 
Make 25 or so independent Monte Carlo criticality calculations, discarding the uncertainties from the individual 
calculations, and compute the true uncertainties from the ensemble of resu lts from the 25 runs. 
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Table 2. Tru e relative errors in quarter-assembly fission rates 

3.4 3.1 

3.3 3.7 

3.8 3.8 

3.8 3.9 

3.9 3.6 

4.1 3.8 

3.4 3.4 

4.2 3.5 

3.9 3.6 

3.7 3.3 

3.0 3.1 

2.9 3.7 

3.2 3.1 

3.4 3.0 

3.5 3.2 

for MCNP calculation for PWR-2 D pro blem, as multip les 

of MCNP-calculated re lative errors, CJTRUE / CJMCNP 

2.7 2.7 2.6 2.3 2.7 

3.6 3.7 3.7 2.7 2.9 

3.9 4.0 3.6 3.3 3.0 2.9 2.5 2.5 2.2 

4.2 3.3 3.5 3.4 3.2 3.6 3.0 3.0 2.8 

3.5 3.3 3.4 3.4 4.0 3.9 3.5 3.2 3.1 2.5 1.7 

3.5 3.2 2.9 2.6 2.9 3.2 3. 1 2.8 2.7 1.9 1.7 

3.2 3.5 2.6 2.4 2.6 3.0 2.9 2.9 2.8 2.3 2.1 

3.4 3.1 2.7 2.3 2.0 2.4 2.5 2.5 2.1 2.3 2.3 

3.1 2.9 2.3 1.9 1.9 2.3 2.4 2.9 2.7 2.7 2.2 2.8 2.3 

3.6 2.4 2.2 2.2 2.5 1.8 2.2 2.6 2.7 2.9 2.5 2.4 2.5 

3.0 2.2 2.2 2.1 2.4 2.5 2.4 2.6 2.7 2.6 2.7 3.0 2.6 

3.3 2.6 2.5 2.8 3.0 2.9 3.5 3.2 3.3 3.1 3.1 3.2 3.3 

2.9 3.1 3.2 3.3 3.5 3.5 3.6 3.9 3.7 3.9 3.5 3.4 2.9 

3.1 3.6 3.4 3.5 3.9 3.7 4.0 4.3 4.0 4.3 3.8 4.2 3.5 

2.8 3.5 3.8 3.9 3.9 3.9 4.1 4.1 4.6 4.4 4.7 4.5 3.8 

A verage factor = ] . I 

While no significant bias ill the statistics of keff has been observed, Monte Carlo code users must be aware 
that localized tall ies (e.g. , measurement foi I absorption, dose rates, heating rates, fis sion distribu ti ns, etc.) may 
show signifi cant underprediction of the statistics; the true statistics may be factors of 2-5 or more times larger 
than what the codes report. 

V. CONCLUSIONS 

Sections I-IV reviewed the theory and limitations of Monte Carlo criticality calculations; provided realistic 
examples of the effects of convergence, bias in keff and reaction rate distributions due to the number of neutrons 
p r cycle, and underprediction of uncertainties due to the neglect of correlation effects; and recommended best 
practices for Monte Carlo practitioners. These best practices are summarized below: 

• Before performing long-running Monte Carlo criticality calculations, always review the code input 
thoroughly and view the problem geometry in a plotter to be sure it is correct. 

• To determine the number of cycles needed for convergence of the power iterat ion method, always make a 
trial run llsing - 100 cycles and a moderate number of neutrons per cy cle (e.g., 1000). Examine plots of 
both kefj and H src vs cycle to determine the number of cycles to be discarded before beginning tall ies. 

• To prevent bias in kelT and reaction rate ta llies, at least 5000 or more neutrons per cycle should be used for 
long production runs. It is preferable to use I 0,000,20,000,50,000, or more neutrons per cycle, as long as 
a few hundred act ive cycles are computed. 

9 



• To improve convergence and reduce the bias in uncerta inties, always take advan tage of sym m etry in the 

pro bl em geometry. If symmetry permits, using a l/8
th 

-core or Y..-core geometry mode l with refl ecting or 
periodi c planar boundaries rather than a fu ll -core model will reduce the problem dom inance ratio (due to 
the li mination of severa l higher radial modes). 

• In assessing the uncertainties on computed results, be aware that the true uncertainti es m ay be higher by 
factors of 5 or more, especially if the dominance ratio is close to I. It may be helpful to make independent 

M onte C arlo runs and compare the results and uncertainties from each. It can also be usefu l to compare 
the resu lts and uncerta in ties fo r d ifferent tallies in symmetric locations of a problem, as an indication of 

how good the computed uncertainties are. 
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