

Burnup Credit Approach in the Yucca Mountain License Application

John Scaglione and John Wagner (presenter) DOE/OCRWM Lead Laboratory Oak Ridge National Laboratory

International Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition Organized by: Nuclear Safety Council of Spain (CSN) and the International Atomic Energy Agency (IAEA)

October 27 – 30, 2009 Cordoba, Spain

The contents of this presentation reflect the views solely of the author and not necessarily the views of Oak Ridge National Laboratory or the U.S. Department of Energy

Outline

- License Application addressing of postclosure criticality
- Considerations for geologic disposal
- Isotopic modeling
- Criticality modeling
- Application discussion
- Loading curve
- Misload
- Sensitivity to number of credited isotopes

U.S. Regulatory Criterion

- Proposed 10 CFR 63.342(a)* required "DOE's performance assessments conducted to show compliance with 63.311(a)(1), 63.321(b)(1), and 63.331 shall not include consideration of very unlikely features, events, and processes, i.e., those that are estimated to have less than one chance in 10,000 of occurrence within 10,000 years of disposal (less than one chance in 100,000,000 per year)" (70 FR 53313, pp. 53319 to 53320).
- * NRC issued final rule on March 13, 2009 after initial license application submittal and does not contain any material differences from the proposed with respect to this presentation

Criticality Control in the License Application

- Rely on engineered systems, natural systems, and waste form properties to ensure the probability of criticality is less than the threshold for inclusion in the performance assessment as prescribed by the requirements of 10 CFR 63
- In-package criticality control uses neutron absorbers and burnup credit (for commercial spent nuclear fuel, CSNF)
 - Burnup credit loading curves are developed such that they preclude criticality for waste packages <u>loaded in</u> <u>accordance to design specifications</u> under fully flooded conditions

Considerations for SNF Geologic Disposal

Reactivity Credit from Burnup

- Comprised of two primary calculations
 - Isotopic Calculation
 - Depletion of U-235
 - Buildup of higher actinides
 - Buildup of fission products
 - Criticality Calculation
 - Nuclear data
 - Geometry
 - Neutron spectrum

• Must work in conjunction with system application

Critical Limit

$$CL < f(x) - \Delta k_{EROA} - \Delta k_{ISO} - \Delta k_{m}$$

x = a neutronic parameter used for trending

f(x) = the lower-bound tolerance limit function

 Δk_{EROA} = penalty for extending the range of applicability

 Δk_{ISO} = penalty for isotopic composition bias and uncertainty

 $\Delta k_m =$ traditional administrative margin turning the CL function into an upper subcritical limit function

Isotopic Calculation

- Used to quantify the bias and uncertainty for calculations of irradiated fuel isotopic compositions by direct difference method
 - $\Delta k_{eff} = k_{eff} [SAS2H] k_{eff} [RCA]$
 - Aggregate effect of nuclide uncertainties on system k_{eff} directly
- Mathematically establish ∆k_{ISO} penalty factor in critical limit equation from ∆k_{eff} values

Principal Isotopes

Fission Products						
⁹⁵ Mo	⁹⁹ Tc	¹⁰¹ Ru	¹⁰³ Rh	¹⁰⁹ Ag		
¹⁴³ Nd	¹⁴⁵ Nd	¹⁴⁷ Sm	¹⁴⁹ Sm	¹⁵⁰ Sm		
¹⁵¹ Sm	¹⁵² Sm	¹⁵¹ Eu	¹⁵³ Eu	¹⁵⁵ Gd		
Actinides						
²³³ U	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U		
²³⁷ Np	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu		
²⁴² Pu	²⁴¹ Am	^{242m} Am	²⁴³ Am			

RCA Sample Overview

Reactor	Assembly Design	# of Samples/ assemblies/rods	Sample Burnups (GWd/MTU)	Initial Enrichments (Wt% ²³⁵ U)
Trino Vercelles	Westinghouse (W), Irregular*	14/3/6	12.042 11.529-24.548	3.897 3.130
Yankee Rowe	W, Irregular	8/1/3	15.95-35.97	3.400
Turkey Point	W 15x15, 20 GT	5/2/5	30.72-31.56	2.556
Mihama	W 15x15,	9/3/NA	6.92-8.3	3.208
	20 GT		14.66-21.29	3.203
			29.5-34.32	3.210
H.B. Robinson	W 15x15, 20 GT, 12 BP	4/1/1	16.02-31.66	2.561
Obrigheim	Siemens 14x14	6/5/special ^{**}	25.93-29.52	3.130
Calvert Cliffs	Combustion	9/3/3	27.35-44.34	3.038
	Engineering		18.68-33.17	2.720
	14x14 BP present		31.40-46.46	2.453
ТМІ	B&W 15x15,	5/1/1	44.8-51.3	4.670
	16 GT	6/1/1	44.8-55.7	4.670
		4/1/2	23.7-26.7	4.670
		4/1/3	22.8-29.9	4.670

* Non-standard assembly design, ** Half assembly dissolved

RCA Δk_{eff} **Results**

Criticality Calculation

- Requires detailed knowledge of the application system and modes for degradation/reconfiguration to select applicable benchmarks
 - Initiating events that can result in breached waste packages
- Design basis configurations were developed and used to bound, in terms of reactivity, possible relevant variations for each waste form
- Applicable benchmarks used for establishing lower bound tolerance limit function in CL equation (f(x))

Design Basis Geometry

- B-SS plate thickness accounts for >10,000 years of general corrosion to B-SS plates
 - Corroded B-SS would displace moderator and still contain B, but is completely removed from system for conservatism
- B-SS plate width reduced to allow assembly-toassembly interaction at basket corners
- Tight-pack cylindrical geometry with assemblies in optimum cell position (non-physical)
- Most reactive assembly design (B&W 15x15, GE 7x7)

Design Basis Configurations

Critical Benchmarks

- LCEs
 - LEU and MOX
 - Haut Taux de Combustion _____
 - Mixture of U and Pu oxides
 - Pu:U ratio similar to 4.5wt% at 37.5 GWd/MTU
- **CRCs**
 - Irradiated fuel critical configurations
- Lower Bound Tolerance Limit = 0.9778

Summary of Applicable Critical Experiments (PWR)

Application system		Number of applicable critical experiments						
Waste package	Enrichment / BU	MOX lattice	MOX solution	LEU	HTC	CRC	Total	
21 PWR	2.0/0	0	0	37	0	4	41	
nominal	3.0 / 0	0	0	37	1	5	43	
comgutation	3.0 / 15	17	0	0	145	56	218	
	3.5 / 25	18	0	0	145	56	219	
	4.0 / 30	18	1	0	145	56	220	
	4.5 / 35	19	11	0	145	56	231	
	5.0 / 40	18	1	0	145	56	220	
21 PWR	2.0 / 0	0	0	37	0	4	41	
design-basis configuration	3.0 / 0	0	0	37	1	5	43	
	3.0 / 15	17	0	0	145	56	218	
	3.5 / 25	18	0	0	145	56	219	
	4.0 / 30	18	1	0	145	56	220	
	4.5 / 35	19	11	0	145	56	231	
	5.0 / 40	18	1	0	145	56	220	

Summary of Applicable Critical Experiments (BWR)

Application system		Number of applicable critical experiments						
Waste package	Enrichment / BU	MOX lattice	MOX solution	LEU	HTC	CRC	Total	
44 BWR	3.0 / 0	0	0	37	0	4	41	
nominal	3.0 / 10	20	9	0	145	56	230	
conliguration	4.0 / 0	0	0	37	0	4	41	
	4.0 / 20	21	17	0	145	51	234	
	5.0 / 30	21	19	0	145	51	236	
44 BWR design-basis configuration	3.0 / 0	0	0	37	0	4	41	
	3.0 / 10	19	9	0	145	56	229	
	4.0 / 0	0	0	37	0	4	41	
	4.0 / 20	21	17	0	145	51	234	
	5.0 / 30	21	21	0	145	51	238	

Critical Experiment Applicability

Trending parameter

Application Model Parameters

- Uses Design Basis Geometry parameters
- Bounding isotopic compositions
 - Conservative depletion parameters to increase residual reactivity at discharge
 - 5-yr decayed isotopic compositions
 - Fuel density at 98% T.D.
- Conservative axial burnup profiles
- Maximum reflector effectiveness
- 75% Neutron absorber credit in plates
- Fully flooded with full density water (most reactive moderator)

Conservative Depletion Parameters

<u>Parameter</u>	<u>PWR</u>	<u>BWR</u>	
Assembly design	B&W 15x15	GE 7x7	
Fuel Temperature (K)	1144.1 [861.3]	1200 [1000]	
Moderator Temperature (K)	588.7 [579.8]	560.7 [560.7]	
Moderator density (g/cm ³)	0.6905 [0.7556]	0.3 [0.43 length avg.]	
Soluble boron concentration	1000 (constant) [letdown	N/A	
(ppmB)	curve per cycle]		
Burnable poison rods (B ₄ C for PWRs) Gd ₂ O ₃ fuel rods for BWRs	Inserted in all tubes for all cycles even if depleted (3.5 wt% B ₄ C) [inserted for 1 st cycle then removed]	Not modeled [varies per assembly]	
Control blades	N/A	Inserted full length for final 15 GWd/MTU of irradiation [Only fractionally inserted]	
Fuel density (98% theoretical density) (g/cm ³)	10.741 [10.121 vol. avg., varies]	10.741 [≤10.4]	
Specific power (MWt/mtU)	29.74 [43.0 varies]	22.38 [35.68 varies]	

Reactivity of CSNF as a Function of Time

k_{bounding} - k_{nominal}

PWR Limiting Burnup Profile

Axial Profile Effects

CSNF Loading Curves (CL = 0.9529)

Misload Sensitivity

- Stochastic simulation inserting 1 misload and randomly filling remaining locations
- No credit for burnup in excess of 50 GWd/MTU
- Number of times k_{eff} exceeded CL tallied per location
- Combined failure probability was 0.2% (Assuming all in Position E is 1.4%)
- Misload in A or B location did not exceed CL
- 1990 potential misload assemblies (representative PWR SNF inventory 93770). Only 36 exceeded CL if misloaded (0.04% of inventory)

Loading Curve Sensitivity to Isotope Set

Summary

- Application model parameters selected to account for operational differences and geometry changes (realistic bound of k_{eff})
- Criticality calculations were used to identify conditions necessary for criticality in a geologic repository while taking reactivity credit for fuel burnup
- Conditions necessary for criticality were evaluated in a probabilistic assessment
- How and where the results of burnup credit criticality evaluations will be used must be factored into the regulator's evaluation (risk-informed)
- Burnup credit is necessary for demonstrating criticality prevention over the post-closure time period

PWR Axial Burnup Profiles

Criticality Event Tree

RCA Measured Isotopes

	# of		# of		# of
Isotope	Samples	Isotope	Samples	Isotope	Samples
U-234	44	Nd-145	31	Eu-155	14
<mark>U-235</mark>	74	Nd-146	20	<mark>Gd-155</mark>	22
<mark>U-236</mark>	74	Nd-148	44	Cm-242	31
<mark>U-238</mark>	49	Nd-150	20	Cm-243	11
<mark>Pu-238</mark>	60	Pm-147	3	Cm-244	32
<mark>Pu-239</mark>	74	<mark>Sm-147</mark>	22	<mark>Am-241</mark>	28
<mark>Pu-240</mark>	74	Sm-148	3	Am-242	6
<mark>Pu-241</mark>	74	<mark>Sm-149</mark>	22	<mark>Am-242m</mark>	27
<mark>Pu-242</mark>	70	<mark>Sm-150</mark>	22	<mark>Am-243</mark>	34
Np-237	31	<mark>Sm-151</mark>	22	U-232	9
Cs-133	3	<mark>Eu-151</mark>	22	Pu-236	3
Cs-134	11	<mark>Sm-152</mark>	22	<mark>Ag-109</mark>	11
Cs-135	3	<mark>Eu-153</mark>	22	Mo-95	11
Cs-137	22	Sm-154	3	Tc-99	11
Nd-143	31	Eu-154	3	<mark>Ru-101</mark>	11
Nd-144	12	Gd-154	3	Rh-103	11

