REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL

Georgeta Radulescu John Wagner (presenter) Oak Ridge National Laboratory

International Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition

Organized by: Nuclear Safety Council of Spain (CSN) and the International Atomic Energy Agency (IAEA)

October 27 - 30, 2009, Cordoba, Spain

Outline

- Overview of the benchmark specification
- Participating organizations, computer codes, and nuclear data
- Results
 - Decay calculations for selected isotopes
 - Criticality calculations
 - Sensitivity calculations
- Summary Remarks / Observations

Overview of the benchmark specification (1/2)

Purpose

- Study the ability of relevant computer codes and associated nuclear data to predict spent fuel isotopic compositions and corresponding k_{eff} values in a cask configuration over the time duration relevant to SNF disposal
- Objective
 - Improve understanding and confidence in our ability to predict k_{eff} and source terms for timeframes relevant to long-term disposal of SNF

Overview of the benchmark specification (1/2)

- Specification (issued Nov 2008)
 - http://www.nea.fr/html/science/wpncs/buc/specifications/phase-VII/Phase-VII BenchmarkSpecification REV01.pdf
 - PWR UO₂ discharge fuel compositions for decay calculations
 - 4.5-wt% ²³⁵U initial enrichment and 50 GWd/MTU burnup
 - Isotopes relevant to burnup credit and public dose as well as their precursors (113 total isotopes)
 - Representative cask model for k_{eff} calculations
 - Borrowed from previous benchmark specifications

- Requested results
 - Predicted isotopic concentrations for 30 time steps (0 1 M yrs)
 - Predicted k_{eff} values for each time step
 - Actinide-only (11 total isotopes) fuel compositions
 - Actinide and fission product (30 total isotopes) fuel compositions

Excerpts from benchmark specification

Table 1. Discharge fuel composition (4.5 initial wt% ²³⁵U, 50-GWd/MTU) for calculating time-dependent spent fuel compositions

Area of applicabil		ity			
Isotope	Atom density (atom/barn·cm)	Benchmark nuclide ^a	Actinide- only burnup credit	Actinide + FP burnup credit	Public dose
¹⁴ C	1.8462E-09	Х			Х
¹⁶ O ^b	4.7923E-02		X	Х	
³⁶ Cl ^c	1.0000E-06	Х			Х
⁴¹ Ca ^c	1.0000E-06	Х			Х
⁵⁹ Ni ^c	1.0000E-06	Х			Х
⁷⁹ Se	5.0582E-07	Х			Х
⁹³ Zr	6.3637E-05	Х			Х
⁹³ Rb	1.6072E-12				
⁹⁰ Sr	4.8584E-05	Х			Х
⁹³ Sr	2.3719E-10				
⁹³ Y	1.9886E-08				
⁹⁵ Y	3.8958E-10				
^{93m} Nb	6.6305E-11	Х			Х
⁹⁴ Nb	6.2143E-11	Х			Х
⁹⁵ Nb	1.9348E-06				
⁹³ Mo	1.1478E-14	Х			Х
⁹⁵ Mo	6.0803E-05	Х		Х	

Excerpts from benchmark specification

Time case number	Time (y)	Time case number	Time (y)
1	0	16	1000
2	1	17	2000
3	2	18	5000
4	5	19	8000
5	10	20	10,000
6	20	21	15,000
7	40	22	20,000
8	60	23	25,000
9	80	24	30,000
10	100	25	40,000
11	120	26	45,000
12	150	27	50,000
13	200	28	100,000
14	300	29	500,000
15	500	30	1,000,000

Table 2: Times for calculating and reporting isotopic compositions

Excerpts from benchmark specification

Table 3: Nuclide sets to be used in k_{eff} calculations

Set 1: Actinide-only burnup-credit nuclides (11 total)

²³³U, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, and ²⁴¹Am

Set 2: Actinide + fission product burnup-credit nuclides (30 total)

²³³U, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am, ^{242m}Am, ²⁴³Am, ⁹⁵Mo, ⁹⁹Tc, ¹⁰¹Ru, ¹⁰³Rh, ¹⁰⁹Ag, ¹³³Cs, ¹⁴³Nd, ¹⁴⁵Nd, ¹⁴⁷Sm, ¹⁴⁹Sm, ¹⁵⁰Sm, ¹⁵¹Sm, ¹⁵²Sm, ¹⁵¹Eu, ¹⁵³Eu, and ¹⁵⁵Gd

Participating Organizations and Computer Codes/Data Used

Country	Organization	Decay Code	Decay Data Library	Criticality Code	Cross-section Data Library
Slovakia	VUJE ^a	SCALE 5.1/ ORIGEN-S	ENDF/B-VI and V	SCALE 5.1/ KENO VI	ENDF/B-V, 44 energy groups (EGs)
USA	ORNL ^b	SCALE 6/ ORIGEN-S (CCC-750)	ENDF/B-VI and V	SCALE 6/ KENO V.a	ENDF/B-VII.0, continuous energy (CE)
Japan	JAEA °	ORIGEN2.2UPJ (NEA-1642)	ORLIB33 d	MCNP-4C2	JENDL3.3, CE
Sweden	E Mennerdahl Systems	SCALE6/ ORIGEN-S	ENDF/B-VI and V	SCALE 6/ KENO V.a	ENDF/B-VII.0, CE
Spain	DENIM/CSN/ SEA Ingenieria	ACAB V2008	JEFF-3.1	MCNPX-2.5	JEFF-3.1.1, CE
	e			MCNPX-2.4.0	ENDF/B-VI, CE
		ACAB V2008	From ORIGEN-S	MCNPX-2.5	JEFF-3.1.1, CE
France	AREVA-TN	DARWIN 2.1	JEF-2.2	CRISTAL V1.0	JEF-2.2, 172 EGs

^a Nuclear Power Plant Research Institute Trnava Inc, VUJE

^b Oak Ridge National Laboratory

^c Japan Atomic Energy Agency

^d JNDC FP nuclear data library and JENDL3.3

^e Additional criticality calculations and analyses were provided by these organizations to be included as an Annex to the final report.

Participating Organizations and Computer Codes/Data Used

Country	Organization	Decay Code	Decay Data Library	Criticality Code	Cross-section Data Library
France	IRSN ^a	DARWIN 2.0	JEF-2	MORET 5 ^b	JEFF-3.1, CE
		PHOENIX 1.0.0a ^b	DECAY.LIB (ORGEN2.2)	N/A	N/A
Germany	GRS °	ORIGEN-X- 2008	ENDF/B-VI	SCALE 6/ KENO V.a	ENDF/B-VII.0, 238 EGs
Czech Republic	Nuclear Research Institute at Rez	SCALE 6/ ORIGEN-S	ENDF/B-VI and V	SCALE 6/ KENO V.a	ENDF/B-VII.0, 238 EGs
				SCALE 6/ KENO V.a	ENDF/B-VII.0, CE
Finland	VTT d	SCALE 6/ ORIGEN-S	ENDF/B-VI and V	MCNP5, version 1.40	ENDF/B-VI, CE
Hungary	KFKI ^e	SCALE 6/ ORIGEN-S	ENDF/B-VI and V	MCNP5	ENDF/B-VI.2 and V, CE
		TIBSO (NEA-1592)	JEF-2.2	MCNP5	ENDF/B-VI.2 and V, CE

^a Institut de Radioprotection et de Sûreté Nucléaire

^b Under development

° Gesellschaft für Anlagen-und Reaktorsicherheit mbH

^d VTT Technical Research Centre of Finland

^e KFKI Atomic Energy Research Institute

Summary: Participation

- 11 countries, 13 organizations, 14 decay calculations, 15 criticality calculations
- ORIGEN, ORIGEN-based, DARWIN, PHOENIX decay calculation codes
 - Numerical and analytical methods for solving decay chain equations
 - Matrix exponential method (ORIGEN, PHOENIX)
 - Analytical method and 4th order Runge Kutta numerical method (DARWIN, PHOENIX)
 - Decay data libraries
 - ENDF/B-V, VI
 - JENDL3.3
 - JEFF-3.1
 - JEF-2.2
- SCALE, MCNP, MORET Monte Carlo criticality codes
 - Neutron cross-section data libraries
 - ENDF/B-V, 44 energy groups
 - ENDF/B-VI continuous energy
 - ENDF/B-VII.0 continuous energy
 - ENDF/B-VII.0 238 energy groups
 - JEF-2.2, 172 energy groups
 - JENDL3.3 continuous energy
 - JEFF-3.1 continuous energy
 - JEFF-3.1.1 continuous energy

ISOTOPIC RESULTS

Time-dependent Actinide Concentrations

 241 Pu (14.4y) $\rightarrow ^{241}$ Am (432.7y)

²⁴¹Pu result variability for the first 200 years after fuel discharge indicates differences in ²⁴¹Pu half-life values.

NATIONAK RIDGE National Laboratory

Time-dependent FP Concentrations

Note: Different trends between the results obtained with JEF and JENDL decay libraries (DARWIN, TIBSO, and ORIGEN2.2UPJ) and the other results.

Note: Different trends between the results obtained with JEF and JENDL decay libraries (DARWIN, TIBSO, and ORIGEN2.2UPJ) and the other results. ¹⁵¹Sm (90y) \rightarrow ¹⁵¹Eu.

Note: DARWIN, TIBSO, and PHONIX 1.0.0a beta results are lower than the results of the other calculations for short decay times. ^{155}Eu (4.75 y) \rightarrow ^{155}Gd .

CRITICALITY RESULTS

k_{eff} Values – difference from mean

k_{eff} as a Function of Decay Time for Actinide-only Fuel Compositions

k_{eff} Result Variability as a Function of Decay Time

 $\Delta k_{eff-min} = 0.0062 (150 \text{ years})$ $\Delta k_{eff-max} = 0.0153 (1,000,000 \text{ years})$

Actinide-only k_{eff} Values – Mean and Standard Deviation as a Function of Decay Time

k_{eff} as a Function of Decay Time for Actinide and FP Fuel Compositions

k_{eff} Result Variability as a Function of Decay Time

 $\Delta k_{eff-min} = 0.0059 (20 \text{ and } 40 \text{ years})$ $\Delta k_{eff-max} = 0.0112 (45,000 \text{ years})$

Cross-section Data Sensitivity and Uncertainty Analysis

ENDF/B-VII Neutron Cross-Section Data Actinide and Fission Product Compositions

SCALE/TSUNAMI Cross-section Sensitivity and Uncertainty Analysis

- SCALE ENDF/B-VII 238 energy-group library
- Covariance data from ENDF/B-VII, ENDF/B-VI and JENDL3.3
- Energy and region integrated k_{eff} sensitivity to total and reaction-specific cross section (sensitivity coefficient)

$$S_{k,\Sigma_x^n} = \frac{\delta k_{eff} / k_{eff}}{\delta \Sigma_x^n / \Sigma_x^n}$$

k_{eff} uncertainty due to cross-section covariance data

k_{eff} Sensitivity to ENDF/B-VII Cross-section Data for Actinides

k_{eff} Sensitivity to ENDF/B-VII Cross-section Data for FPs

k_{eff} Uncertainty Due to Cross-section Covariance Data

Main Contributions to k_{eff} Uncertainty: 5-Year Composition

Uncertainty Information

The relative standard deviation of k_{eff} (% $\Delta k/k$) due to cross-section covariance data is: 0.6694 +/- 0.0002 % $\Delta k/k$

contributions to uncertainty in k_{eff} (% $\Delta k/k)$ by individual energy covariance matrices:

Covarian	ice Matrix	Contributions to Uncertainty in k_{eff} (% $\Delta k/k$)
Nuclide-Reaction	Nuclide-Reaction	Due to this Matrix
²³⁹ Pu nubar	²³⁹ Pu nubar	5.0778E-01 ± 9.0578E-06
²³⁹ Pu fission	²³⁹ Pu fission	2.2690E-01 ± 2.4978E-05
²³⁸ U n,gamma	²³⁸ U n.gamma	2.0611E-01 ± 2.2585E-05
²³⁹ Pu fission	²³⁹ Pu n,gamma	1.5414E-01 ± 8.8179E-06
²³⁹ Pu n,gamma	²³⁹ Pu n,gamma	1.2093E-01 ± 7.9528E-06
²³⁵ U nubar	²³⁵ U nubar	8.9091E-02 ± 4.4085E-07
²³⁸ U nubar	²³⁸ U nubar	8.3732E-02 ± 7.1339E-07
²⁴⁰ Pu n,gamma	²⁴⁰ Pu n,gamma	7.7584E-02 ± 5.1260E-06
²³⁹ Pu chi	²³⁹ Pu chi	6.4925E-02 ± 4.5365E-06
²⁴¹ Pu fission	²⁴¹ Pu fission	6.2628E-02 ± 2.3493E-06
¹⁴³ Nd n,gamma	¹⁴³ Nd n,gamma	5.6047E-02 ± 1.9577E-06
²³⁵ U fission	²³⁵ U fission	4.9051E-02 ± 1.6340E-06
²⁴² Pu n,gamma	²⁴² Pu n.gamma	4.4747E-02 ± 1.8145E-05
²³⁵ U n,gamma	²³⁵ U n,gamma	$4.2852E-02 \pm 1.0626E-06$

Main Contributions to k_{eff} Uncertainty: 100-Year Composition

Uncertainty Information

The relative standard deviation of k $_{\rm eff}$ (% $\Delta k/k)$ due to cross-section covariance data is: 0.7601 +/- 0.0002 % $\Delta k/k$

contributions to uncertainty in k_{eff} (% $\Delta k/k$) by individual energy covariance matrices:

Covarian	ice Matrix	Contributions to Uncertainty in k_{eff} (% $\Delta k/k$)
Nuclide-Reaction	Nuclide-Reaction	Due to this Matrix
²³⁹ Pu nubar	²³⁹ Pu nubar	5.7439E-01 ± 8.9982E-06
²³⁹ Pu fission	²³⁹ Pu fission	2.7783E-01 ± 2.7696E-05
²³⁸ U n,gamma	²³⁸ U n.gamma	2.0852E-01 ± 1.9370E-05
²³⁹ Pu fission	²³⁹ Pu n.gamma	1.7217E-01 ± 8.8669E-06
²⁴¹ Am n.gamma	²⁴¹ Am n,gamma	1.3039E-01 ± 1.1399E-05
²³⁹ Pu n.gamma	²³⁹ Pu n.gamma	1.2333E-01 ± 6.9922E-06
²³⁵ U nubar	²³⁵ U nubar	1.0226E-01 ± 4.5073E-07
²³⁸ U nubar	²³⁸ U nubar	9.3136E-02 ± 6.7540E-07
²³⁹ Pu chi	²³⁹ Pu chi	9.2804E-02 ± 5.4027E-06
²⁴⁰ Pu n.gamma	²⁴⁰ Pu n.gamma	7.9816E-02 ± 4.5176E-06
²³⁵ U fission	²³⁵ U fission	6.1910E-02 ± 1.8832E-06
¹⁴³ Nd n,gamma	¹⁴³ Nd n,gamma	5.7248E-02 ± 1.7462E-06
²³⁸ U n,n'	²³⁸ U n,n'	$5.5646E-02 \pm 1.8255E-04$
²³⁵ U fission	²³⁵ U n.gamma	4.5423E-02 ± 7.6296E-07

Main Contributions to k_{eff} Uncertainty: 100,000-Year Composition

Uncertainty Information

The relative standard deviation of k_{eff} (% $\Delta k/k$) due to cross-section covariance data is: 0.4845 +/- 0.0003

contributions to uncertainty in k_{eff} (% $\Delta k/k)$ by individual energy covariance matrices:

Covarian	ice Matrix	Contributions to Uncertainty in k_{eff} (% $\Delta k/k$)
Nuclide-Reaction	Nuclide-Reaction	Due to this Matrix
²³⁵ U nubar	²³⁵ U nubar	2.5578E-01 ± 5.3053E-06
²³⁸ U n,gamma	²³⁸ U n,gamma	2.5539E-01 ± 3.7912E-05
²³⁵ U fission	²³⁵ U fission	1.5704E-01 ± 1.7943E-05
²³⁵ U fission	²³⁵ U n,gamma	1.1388E-01 ± 7.2070E-06
²³⁵ U n.gamma	²³⁵ U n,gamma	$1.0610E-01 \pm 9.0925E-06$
²³⁵ U chi	²³⁵ U chi	9.1964E-02 ± 1.0218E-05
²³⁷ Np n.gamma	²³⁷ Np n _s gamma	9.0969E-02 ± 9.0453E-06
²³⁸ U nubar	²³⁸ U nubar	9.0863E-02 ± 1.1547E-06
¹⁴³ Nd n,gamma	¹⁴³ Nd n.gamma	7.7838E-02 ± 4.7132E-06
²³⁹ Pu nubar	²³⁹ Pu nubar	5.0292E-02 ± 1.2969E-07
¹⁰³ Rh n.gamma	¹⁰³ Rh n.gamma	4.6700E-02 ± 1.0876E-05
¹ H n,gamma	¹ H n,gamma	4.2308E-02 ± 1.1226E-06
²³⁸ U n,n'	²³⁸ U n,n'	4.2102E-02 ± 2.2373E-04
²⁴² Pu n,gamma	²⁴² Pu n,gamma	4.1249E-02 ± 1.8701E-05

Summary Remarks / Observations

Summary: Participation

- 11 countries, 13 organizations, 14 decay calculations, 15 criticality calculations
- ORIGEN, ORIGEN-based, DARWIN, PHOENIX decay calculation codes
 - Numerical and analytical methods for solving decay chain equations
 - Matrix exponential method (ORIGEN, PHOENIX)
 - Analytical method and 4th order Runge Kutta numerical method (DARWIN, PHOENIX)
 - Decay data libraries
 - ENDF/B-V, VI
 - JENDL3.3
 - JEFF-3.1
 - JEF-2.2
- SCALE, MCNP, MORET Monte Carlo criticality codes
 - Neutron cross-section data libraries
 - ENDF/B-V, 44 energy groups
 - ENDF/B-VI continuous energy
 - ENDF/B-VII.0 continuous energy
 - ENDF/B-VII.0 238 energy groups
 - JEF-2.2, 172 energy groups
 - JENDL3.3 continuous energy
 - JEFF-3.1 continuous energy
 - JEFF-3.1.1 continuous energy

Preliminary Observations: Decay Calculations

- Several different trends identified
 - Different trends between the results obtained with JENDL and ORIGEN2 DECAY.LIB data libraries (ORIGEN2.2UPJ and PHOENIX 1.0.0a) and the other results for
 - ²³⁹Pu, ²⁴⁰Pu, ²⁴²Pu, ^{242m}Am
 - Different trends among the results obtained with different libraries for
 - ²⁴¹Pu, ²⁴³Am
 - Different trends between the results obtained with JEF and JENDL decay data libraries (DARWIN, TIBSO, and ORIGEN2.2UPJ) and the other results for
 - ¹⁵¹Sm, ¹⁵¹Eu
 - Different trends between the results obtained with JEF and ORIGEN2 DECAY.LIB data libraries (DARWIN, TIBSO, and PHOENIX 1.0.0a) and the other results for
 - ¹⁵⁵Gd (¹⁵⁵Eu)

Preliminary Observations: Criticality Calculations

- k_{eff} calculations were performed using a variety of criticality codes and cross-section data
- Results for specified compositions provide insights into variations due to criticality code and cross-section data
 - Fresh fuel composition
 - k_{eff} varied from 1.1429 ± 0.0008 (SCALE 5.1, ENDF/B-V 44 EGs) to 1.1540 ± 0.0003 (CRISTAL V1.0, JEF-2.2, 172 EGs)
 - Discharge actinide-only fuel composition
 - k_{eff} varied from 0.9507 ± 0.0004 (SCALE 6, ENDF/B-VII.0 CE) to 0.9582 ± 0.0003 (MCNPX-2.5, JEFF-3.1.1 CE)
 - Discharge actinide and FP fuel composition
 - k_{eff} varied from 0.8568 ± 0.0003 (SCALE 6, ENDF/B-VII.0 CE) to 0.8639 ± 0.0005 (MCNP-4C2, JENDL3.3 CE)

Preliminary Observations: Criticality Calculations

- k_{eff} results for time-dependent compositions show the impact of nuclear data, calculation method, and isotopic composition bias
- Computational method and cross-section data appear to have a larger impact on k_{eff} than differences in isotopic composition predictions
- k_{eff} results for time-dependent actinide-only compositions
 - Δk_{eff-min} = 0.0062 (150 years)
 - $\Delta k_{eff-max} = 0.0153 (1,000,000 \text{ years})$
- k_{eff} results for time-dependent actinide and FP compositions
 - $\Delta k_{eff-min} = 0.0059$ (20 and 40 years)
 - $\Delta k_{eff-max} = 0.0112 (45,000 \text{ years})$
- k_{eff} uncertainty due to covariance data
 - Min % $\Delta k_{eff} = 0.4845$ (100,000 years)
 - Max % $\Delta k_{eff} = 0.7601$ (100 years)

Next steps

- Complete analysis of participant's results
 - Communicate with participants about their results, as needed
- Perform sensitivity calculations for isotopic predictions
- Complete and circulate draft report to participants for review
- Propose follow-up activity, if identified
- Publish benchmark report

Backup Slides

²⁴¹Pu (14.4y) \rightarrow ²⁴¹Am (432.7y) \rightarrow ²³⁷Np (2.14E6y)

Note: Different trends between ORIGEN2.2UPJ and PHONIX 1.0.0a beta results and the results of the other calculations for long decay times.

Note: Different trends between ORIGEN2.2UPJ and PHONIX 1.0.0a beta results and the results of the other calculations for long decay times.

²⁴¹Pu (14.4y) → ²⁴¹Am (432.7y)

Note: Different trends between ORIGEN2.2UPJ and PHONIX 1.0.0a beta results and the results of the other calculations for long decay times.

Comparison of k_{eff} Values for the Fresh Fuel Composition

$$k_{eff-max} - k_{eff-min} = 0.01109$$

Comparison of k_{eff} Values for Discharge Actinide-only Fuel Composition

$$k_{eff-max} - k_{eff-min} = 0.00749$$

Comparison of k_{eff} Values for Discharge Actinide and FP Fuel Composition

$$k_{eff-max} - k_{eff-min} = 0.00714$$

