

USE OF FISSION PRODUCT EXPERIMENTS FOR BURNUP CREDIT VALIDATION

Tatiana IVANOVA, Nicolas LECLAIRE, Eric LETANG (IRSN) Jean-François THRO (AREVA NC)

International Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition

October 28, 2009 Cordoba, Spain

Outline

- French Fission Product (FP) Experimental Program
- Modification to the adjustment technique to establish bias and bias uncertainty due to FPs
- FP credit validation for application systems of the present and future fuel cycle
- Summary

French FP Experimental Program

Series of 145 critical experiments referred to as the FP Experimental Program was performed in the Valduc facility (CEA, France) in 1998-2004 [Ref.] with Cs-133, Sm-149, Sm-152, Gd-155, Ph-103, and Nd-143 in solutions

a) "Physical" b) "Elementary Dissolution" c) "Global Dissolution"

[Ref.] N. Leclaire et al., "Fission Products Experimental Programme: Validation and Computational Analysis", *Nucl. Sci. Eng.*, **161**, 2, pp. 188-215 (2009)

Sensitivity Comparison: an Example

 $k_{\rm eff}$ sensitivity* to FP are significantly smaller than sensitivities for major actinides and moderator materials

*Sensitivity coefficients calculated by TSUNAMI-3D code/ 44-group ENDF/B-V based library

BUC Workshop October 28, 2009 Cordoba, Spain Page 4

Analysis of the FP Experiments: an Example (1/3)

Some Physical Type Configurations

								Number of		
				_			Number of	rods		
Exp.	No.	FP	C(FP) g/l	$r (g/cm^3)$	$\mathrm{H}^{+}(\mathrm{N})$	Array	rods	removed	°C	Hc (mm)
2834	2	103 Rh	40	1.0916	0.97	25x25-25	600	0	19.9	600
2835	3	103 Rh	20	1.0454	0.49	25x25-25	600	0	20.3	530
2811	8	¹³³ Cs	130	1.1383	0.014	25x25-25	600	0	20	540
2809	11	¹³³ Cs	80	1.0809	0.014	25x25-25	600	0	20	520
2812	13	¹³³ Cs	80	1.1483	2.04	25x25-25	600	0	19.5	521
2817	14	¹³³ Cs	78	1.1463	2	25x25-25	600	0	19	521
2821	16	Ndnat	120	1.2224	0.023	25x25-25	600	0	19	540
2823	18	152 Sm	50	1.088	0.011	25x25-25	600	0	19	700
2844	28	Mixt.		1.0989	0.21	25x25-25	600	0	20	600
2803	35	Water		0.9986	0.014	25x25-25	600	0	19.4	460
2813	37	Water		0.9986	0.014	25x25-25	600	0	19.4	460

IRSN

Analysis of the FP Experiments: an Example (2/3)

Some k_{eff} sensitivity profiles for configuration #2809 with ¹³³Cs

October 28, 2009

IRSN

Analysis of the FP Experiments: an Example (3/3)

Some k_{eff} difference sensitivity for configurations with (#2809) and without (#2803) ¹³³Cs

Basic Equations for the "Adjustment" Method

$$\mathbf{S}^{2} = \mathbf{P}^{\mathsf{t}} \mathbf{W}^{-1} \mathbf{P} + (\Delta \mathbf{k} - \mathbf{H} \mathbf{P})^{\mathsf{t}} \mathbf{U}^{-1} (\Delta \mathbf{k} - \mathbf{H} \mathbf{P})$$

$$\mathbf{P} = (\mathbf{W}^{-1} + \mathbf{H}^{\mathsf{t}}\mathbf{U}^{-1}\mathbf{H})^{-1}\mathbf{H}^{\mathsf{t}}\mathbf{U}^{-1}\Delta \mathbf{k}$$

$$\mathbf{W'} = (\mathbf{W}^{-1} + \mathbf{H}^{\mathsf{t}}\mathbf{U}^{-1}\mathbf{H})^{-1}$$

Bias for Application System = DP Bias Uncertainty for Application System = DW'D^t

- W ND covariances
- U Experimental uncertainty correlation
- H $k_{\rm eff}$ Sensitivities for experiments
- D k_{eff} Sensitivities for application systems
- P vector of corrections to cross sections

 $\Delta K = k_c - k_e$

Modification to the "Adjustment" Method

Standard Approach

Modified Approach

W: covariance data for

U-235, U-238, H, O, FPs

 W_1 : covariance data for U-235, U-238, H, O W_2 : covariance data for FP-1, W_3 : covariance data for FP-2...

Some ND Covariance Before/After the "Adjustment"

k_{eff} Bias for the FP Configurations

IRSI

Uncertainty Assessment for Typical Application System

Simplified models of storage in accidental condition for UO₂ fuel with initial enrichment of 5% burned to 40 GWd/MTU and 60 GWd/MTU

The composition of the spent fuel was calculated by CESAR4 code

Application Case- Spent (40 GWd/tU) Fuel Storage

October 28, 2009

Uncertainty Assessment for Future Application System

Simplified model of MOX fuel for GFR burned to ~120 GWd/MTU and flooded by water [Ref.]

The composition of the spent fuel was calculated by ORIGEN code

[Ref.] P. N. Alekseev et al., Nuclear facility with the gas cooled fast reactor BGR-1000 using coated particles and technologies of light water reactors, Proc. of International Congress on Advances in Nuclear Power Plants (ICAPP 2007) "The Nuclear Renaissance at Work", Volume 3, pp.1657-1663 (2008)

BUC Workshop October 28, 2009 Cordoba, Spain Page 13 IRS N

From Present to Future Fuel Cycle Applications

Summary

- The methodology is proposed and tested to establish bias and bias uncertainty for FPs;
- FP validation study is performed for typical and innovative application systems;
- For the present test application the FP biases are small, as expected, and comparable with the bias uncertainties;
- The significant bias for Sm-149 is established for the innovative (FR) application system;
- The presented results show that the proposed method is useful in design and safety studies for innovative systems;
- The FP experiments provide valuable information to assess FP credit for configurations containing fuel of both the present LWR and the future FR.

IRSI