

Correction Factors derived from the recent JEFF3.1.1 Library for PWR-UOx BUC applications

C. Riffard, A. Santamarina, L. San Felice

CEA, DEN, DER, SPRC, CEA-Cadarache, F-13108 Saint Paul-Lez-Durance

BUC Methodology

The recent BUC methodology developed by CEA in collaboration with AREVA-NC is accounting for:

- Actinides + 15 Fission Products (stable and non-gazeous)
- Conservative hypothesis for the depletion calculation
- Qualification Reports for spent fuel inventory calculation and reactivity worth of BUC nuclides : Isotopic Correction Factors
- Bounding axial burnup profile of spent fuel assemblies (Session III, 3.3)

Main references : ICNC'95, FJSS'98, PHYSOR2002, TMC2005, ICNC'07

French PWR UO₂ BUC Calculation Route / BUC nuclides

Actinides : ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am 15 FPs : ⁹⁵Mo, ⁹⁹Tc, ¹⁰¹Rh, ¹⁰³Rh, ¹⁰⁹Ag, ¹³³Cs, ¹⁴³Nd, ¹⁴⁵Nd, ¹⁴⁷Sm, ¹⁴⁹Sm, ¹⁵⁰Sm, ¹⁵¹Sm, ¹⁵²Sm, ¹⁵³Eu, ¹⁵⁵Gd

Spent Fuel inventory calculation : DARWIN2.3 package

- Destructive analysis of fuel rod cuts from PWR-UO₂ assemblies
- Accurate measurements of isotopic content with mass-spectrometry techniques

Criticality calculations : CRISTAL V1 package

BUC experimental Program

2/ Oscillations experiments in the MINERVE reactor : reactivity worth of individual FPs and overall [actinides + FP] vs BU

Samples of separated FP isotopes in UO₂ pellets, natural elements in AI_2O_3 matrix, Spent fuel samples, Calibration samples (²³⁵U, Borated UO₂)

► 1/ Validation of the DARWIN 2 Depletion Code for SF inventory

ref J-F VIDAL et al., « New Modelling of LWR Assemblies using the APOLLO2 Code Package », M&C2007, Monterey (USA).

Depletion calculation

- Accurate description of Operating Power (PEPIN2)
- Fuel, Clad and Moderator Temperatures calculated with a thermomechanics code (METEOR)
- 'Effective Temperature' of fuel (²³⁸U capture rate)
- Mean Boron concentration + Stretch-out modelisation
- Calculation to experiment comparison
 - PWR UO₂ BUC database:
 - ²³⁵U^{Init} : 3.1% to 4.5%
 - BU : 15 to 60 GWd/t
 - 22 samples
 - (C-E)/E versus burnup (uncertainty (σ) versus burnup

Full Propagation of errors:

Chemical analysis, Burnup determination, Mod. Temp., Fuel Temp., Operating History

Spent fuel inventory calculation biases

Spent fuel inventory calculation biases

(The linear trends are calculated on the whole PIE database)

Spent fuel inventory calculation biases

(The linear trends are calculated from the whole PIE database)

The application of these correction factors enables us to correct the underestimation of some fissile isotopes and the overestimation of some absorbent isotopes for the total calculated reactivity worth; If it is not the case, Fc = 1 (the calculated concentration is not modified), in order to maintain the conservatism of the concentration.

Isotope	Partial Correction Factor JEFF3	
²³⁶ U	0.99	
²⁴⁰ Pu	0.99	
²⁴¹ Pu	1.08	
²⁴² Pu	0.99	
²⁴¹ Am	0.98	
¹³³ Cs	1	
¹⁴³ Nd	0.99	
¹⁵¹ Sm	1	
¹⁵² Sm	1	
¹⁵³ Eu	0.95	
¹⁵⁵ Gd	0.97	

2/ Validation of the CRISTAL V1 code for FP poisoning worth calculation

- Calculation route: deterministic transport Code APOLLO2.5 in CRISTAL V1; experiment analysis by Exact Perturbation Theory
 - Limited multicell geometry 2-D 11x11
 - Pij UP1 model
- From (C-E)/E bias in R1-UO2 (LWR experimental lattice)
 - > (C-E)/E uncertainty (σ) for each FP isotope

Ref Santamarina et al., ICNC95

Minerve core

Quadratic combinaison of errors:

Chemical analysis of the sample material balance, experimental uncertainty of Δ (sample – reference) signal, calibration of the experimental worth signal

► JEF2.2 results

Calculation – experiment biases of FP poisoning worth in R1-UO2 with CRISTAL V1

lastona	(C-E)/E	Uncertainty
isotope	[%]	[%]
Sm-149	-5.7	2.1
Nd-143	-4.5	2.5
Rh-103	13.3	4.0
Cs-133	4.3	1.9
Gd-155	-1.9	2.9
Sm-152	-0.2	3.2
Nd-145	0.4	4.1
Mo-95	-3.6	3.4
Eu-153	-1.6	4.4
Ag-109	-1.7	4.0
Tc-99	4.2	3.8

Maximum deviation [(C-E)/E + σ] = retained value for the determination of CF

Improvements in JEFF3.1.1 : new FP evaluations

A. SANTAMARINA et al., JEF-DOC 1263

Global Correction Factors applied to the BUC nuclides calculated with DARWIN2 / JEF2.2 for criticality calculations involving PWR-UO2 fuels

1	~	~	
(6		
	7		1

Actinides	CF	Fission Product	CF
²³⁴ U	0.94	⁹⁵ Mo	0.94
²³⁵ U	1.01	⁹⁹ Tc	0.87
²³⁶ U	0.98	¹⁰¹ Ru	0.70
²³⁷ Np	0.98	¹⁰³ Rh	0.80
²³⁸ Pu	1.00	¹⁰⁹ Ag	1.00
²⁴⁰ Pu	0.97	¹³³ Cs	0.96
²⁴¹ Pu	1.06	¹⁴³ Nd	0.98
²⁴² Pu	0.99	¹⁴⁵ Nd	0.94
²⁴¹ Am	0.94	¹⁴⁷ Sm	0.99
²⁴³ Am	0.98	¹⁴⁹ Sm	0.97
		¹⁵⁰ Sm	0.97
		¹⁵¹ Sm	0.84
		¹⁵² Sm	0.90
		¹⁵³ Eu	0.83
		¹⁵⁵ Gd	0.86

Improvement of the spent fuel inventory bias with CEA2005V4 for: Pu242 Am241 Nd143 Sm147 Sm151 Sm152 Eu153 Gd155

Full BUC approach based on Global Isotopic Correction Factors applied in front of the criticality calculation, derived from the Qualification reports of the French reference codes :

- DARWIN 2.3 Spent Fuel inventory calculation
- CRISTAL Criticality and FP reactivity worth calculation
- The recommended fuel cycle Library CEA2005V4

Forthcoming :

Significant reduction of the global CF / JEF2.2 due to the CEA2005V4 library for ¹⁴⁷Sm, ¹⁵¹Sm, ¹⁵²Sm, ¹⁵³Eu and ¹⁵⁵Gd isotopes + improvement of ⁹⁹Tc reactivity worth prediction.