

Convergence issues in Best-estimate Monte Carlo Depletion Calculations

### This presentation...

- In the second second
- I ... focuses on Monte Carlo issues when used in depletion calculations
- ... is just the first step of a work in progress !

2

### This presentation...

Motivated by this « strange » result (VESTA / MCNP non reflected rod)



- Few words about Monte Carlo depletion calculations
- A first MC discrepancy benchmarking
- Proposal for extended benchmarking
- Some raising issues of Monte Carlo depletion calculations

Boltzmann Markov chain Monte Carlo solver (versus deterministic/mesh)

Advantages

No geometry constraint or approximation (dimension or shape)

Built-in uncertainty estimation

Uncertainty control (over time of calculation)

5

Boltzmann Markov chain Monte Carlo solver (versus deterministic/mesh)

Advantages

No geometry constraint or approximation (dimension or shape)

Built-in uncertainty estimation

Uncertainty control (over time of calculation)

Disadvantages

CPU cost

Markov chain burn-in

Some estimators are biased (fluxes)

Not easy to parallelize

Not easy to get O/I sensitivity vectors

6

Development trends of MC depletion interfaces

- MONTEBURNS (MCNP / ORIGEN)
- ALEPH (MCNP / ORIGEN)
- VESTA (MCNP|MORET / ORIGEN|PHOENIX)
- SERPENT (PSG / ...)
- MOCA
- **...**

Development trends of MC depletion interfaces

- MONTEBURNS (MCNP / ORIGEN)
- ALEPH (MCNP / ORIGEN)
- VESTA (MCNP|MORET / ORIGEN|PHOENIX)
- SERPENT (PSG / ...)
- MOCA
- •••

#### Only Best-Estimate approaches

- No MC discrepancy control or estimation
- No ND uncertainties propagation

8

#### MC discrepancy

Monte Carlo neutron simulation provides fluxes or reaction rates which mean is used as best estimate value

=> 20 different initial random seed lead to different composition output

9

#### MC discrepancy

Monte Carlo neutron simulation provides fluxes or reaction rates which mean is used as best estimate value

=> 20 different initial random seed lead to different composition output

#### Few words about tools involved

- VESTA MC depletion interface
  - Monte Carlo code: MORET | MCNP
  - Depletion module: PHOENIX | ORIGEN

(Soon) available at http://www.irsn.org/vesta & http://www.irsn.org/moret

#### MC discrepancy

Monte Carlo neutron simulation provides fluxes or reaction rates which mean is used as best estimate value

=> 20 different initial random seed lead to different composition output

#### Few words about tools involved

VESTA - MC depletion interface

Monte Carlo code: MORET | MCNP

Depletion module: PHOENIX | ORIGEN

#### (Soon) available at http://www.irsn.org/vesta & http://www.irsn.org/moret

- PROMETHEE grid for parametric calculation
  - Generic computing environment for any code
  - > Efficiently parallel dispatch of calculations over all connected servers
  - User friendly front-end intended to be used for both day-to-day engineering or research
  - May embed algorithms for advanced computing tasks (uncertainty propagation, sensitivity analysis, optimization, calibration, ...)

Freely available at http://www.irsn.org/promethee

#### Infinite lattice of PWR rod

- Standard composition of fuel
- Reduced height
- Cladding
- Infinite lattice modeled by reflection over water box faces XY, YZ, YZ



#### Infinite lattice of PWR rod

- Standard composition of fuel
- Reduced height
- Cladding
- Infinite lattice modeled by reflection over water box faces XY, YZ, YZ

#### VESTA - MCNP | MORET / ORIGEN

- Focus on U235, Pu239, Xe135
- 20 days, constant power



Yann RICHET

IRSE

#### Infinite lattice of PWR rod

- Standard composition of fuel
- Reduced height
- Cladding
- Infinite lattice modeled by reflection over water box faces XY, YZ, YZ

#### VESTA - MCNP | MORET / ORIGEN

- Focus on U235, Pu239, Xe135
- 20 days, constant power

#### MC&D convergence parameters

- MC:
  - Number of cycles
  - Number of neutrons
- Depletion time step



#### Example of result













# U235

IAEA BUC Meeting - Cordoba 2009

Yann RICHET IRSN 21









IAEA BUC Meeting - Cordoba 2009

Yann RICHET

Number of MC sources (N) effect





#### Number of MC sources (N) effect



#### Number of MC sources (N) effect



Number of MC cycles (n) effect













#### Number of MC cycles (n) effect





IAEA BUC Meeting - Cordoba 2009

36

# Pu239

IAEA BUC Meeting - Cordoba 2009

Yann RICHET IRSN 37





# Xe135





IAEA BUC Meeting - Cordoba 2009

41



#### MC cycles (n)

- (combined with Z reflections) seems to lead to
- Bias of composition expectation
- Larger uncertainty

#### MC sources (N)

- High number of sources limits spreading
- Z reflection to be studied

#### Depletion time step

Spreading seems to stabilize after some time steps...

#### Output

- U235
  - small uncertainties (sd ~ 0.3%)
- Pu239
  - significant uncertainties (sd ~ 2%)
- Xe135
  - large uncertainties (sd ~ 5%)

### Proposal for extended benchmarking

Deeper study of binning related to mean free path of neutrons

- With, without and Z-cycle reflections (how to set in MCNP ?)
- Effect of sampling & tracking convergence methods (ex: Wielandt) ?
- Quantiles bounding with sample size using two-sided Wilks formula

### Proposal for extended benchmarking



#### Short term

- Manage Monte Carlo convergence parameters
  - Number of sources
  - Number of cycles (or batches)
- Manage depletion stability
  - Adaptative time step ?

#### Short term

- Manage Monte Carlo convergence parameters
  - Number of sources
  - Number of cycles (or batches)
- Manage depletion stability
  - Adaptative time step ?

#### Mid term

- « True » vs « Best estimate » Monte Carlo
  - True » Monte Carlo
    - includes a spreading esimator of compositions over time
  - >Not necessary high CPU cost, thanks to raw CPU parallelization
- BUT fluxes estimator need to be corrected (or turned-around)

#### Short term

- Manage Monte Carlo convergence parameters
  - Number of sources
  - Number of cycles (or batches)
- Manage depletion stability
  - Adaptative time step ?

#### Mid term

- « True » vs « Best estimate » Monte Carlo
  - ➤ « True » Monte Carlo
    - includes a spreading esimator of compositions over time
  - >Not necessary high CPU cost, thanks to raw CPU parallelization
- BUT fluxes estimator need to be corrected (or turned-around)
- Well conditioned problem for deterministic calculations may be ill conditioned for Monte Carlo ... and vice-versa ...