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Abstract 

In the paper on hand hierarchical Bayesian Monte Carlo procedures are described which make it possible 
to consider all the uncertainties associated with criticality safety analysis including burnup credit. These 
uncertainties are related to the validation of the depletion calculations performed in burnup credit applica-
tions, the uncertainties associated with the validation of the criticality calculations, the uncertainties asso-
ciated with the parameters characterizing the application cases, as well as the uncertainties of the nuclear 
data with respect to the application cases. A lot of the hierarchical Bayesian procedures described in the 
paper on hand are incorporated in a system of computer codes which is named as MOCADATA. This 
code system has been developed by the authors of the paper on hand. 

1 Introduction 

It is an indispensable part of a criticality safety analysis of a nuclear fuel system performed by 
using numerical methods for calculating the neutron multiplication factor effk  of the system to 
determine the confidence that one has in the numerical result obtained for effk . The determi-
nation of this confidence is necessary in order to be able to demonstrate that the probability that 
the neutron multiplication factor effk  of the system, calculated by means of a specific criticality 
calculation procedure adequately chosen with respect to the system, exceeds the maximum 
allowable neutron multiplication factor maxk , is not greater than an administratively established 
margin γ , i. e. meets the following inequality: 

( ) γ≤>∆+=π S|k)kk(P maxBeffS . (1) 

S  stands for the nuclear fuel system of interest; Sπ  is the probability ( )S|k)kk(P maxBeff >∆+  
that Beff kk ∆+  is greater than maxk  given by an adequate administrative margin mk∆  according 
to 

mmax k1k ∆−= ; (2) 
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and Bk∆  denotes the bias in effk  characteristic of the employed criticality calculation procedure 
with respect to the system S . 

1.1 Observations on the neutron multiplication factor keff and its bias ∆kB 

The neutron multiplication factor effk  of the system S  is a function of 

• a set of parameters ( )K,x,x 21=x  describing the material compositions and geometric 
arrangement of the materials forming the system and 

• a set of nuclear data ( )K,, 21 ξξ=ξ  (cross sections, fission spectra, neutron-per-fission quanti-
ties) related to the isotopic compositions of the system and their impact on the neutron spec-
trum of the system. 

Since characterized by uncertainties due to variations, tolerances or variances and covariances the 
sets of parameters K,x,x 21  and K,, 21 ξξ  represent sets of random variables and hence random 
vectors x  and ξ , respectively. 

Random variables are completely defined by the probability distribution 

( ) ∫=∈
R

dd),(pR),(P ξxξxξx ; (3) 

where R  is some region in the ),( ξx -space, and 

)(p)(p),(p ξxξx ⋅=  (4) 

is the joint probability density function (pdf) of x  and ξ . 

As a function of random variables ),(k eff ξx  is a random variable completely defined by a 
probability distribution )k(F eff . This distribution is determined by the pdf eq. (4). This pdf is 
however unknown in general. But even if ),(p ξx  is assumed to be known the distribution 

)k(F eff  remains unknown, in general, because the direct functional relationship 
)S|,(kk effeff ξx=  with the parameters x  and ξ  for a given system S  is unknown, in general. 

So therefore, any numerical result obtained for )S|,(k eff ξx  is a random sample on the underly-
ing distribution )k(F eff . 

This statement goes not only for the system S  for which the proof of sufficient subcriticality 
shall be furnished (application case) but also for those experimental or experiment-based systems 
chosen as benchmarks adequate to estimate the bias Bk∆  that is characteristic of the applied criti-
cality calculation procedure with respect to the application case S . The bias Bk∆  is usually 
derived by evaluating the statistic 

{ }BieffieffiBB N,...,1i,)k(]k[B)k(S =−=∆ , (5) 

of the deviations iB )k(∆  of the observed results ieff )k(  from their respective expected bench-
mark values ieff ]k[B , BN,...,1i = . BN  denotes the number of evaluated benchmarks. Since the 



3 

distributions ( )ieff )k(F  usually remain unknown the distributions ( )iB )k(F ∆  usually remain 
unknown. Consequently the distribution ( )BkF ∆  remains unknown, in general. 

Since )k(F eff  and ( )BkF ∆  usually remain unknown, the distribution )(F κ  of the sum 

Beff kk ∆+≡κ  remains unknown. Consequently the probability Sπ  on the left-hand side of 
inequality (1) cannot be calculated, in general, since this probability is just given by the distribu-
tion )kk(F)(F Beff ∆+=κ , 

( ) ( ) ( ) ( ) Beff
kk

maxmaxS kk;dS|fd
d

S|dFS|kFS|kP
maxmax

∆+≡κκκ≡κ
κ
κ

=>κ=>κ=π ∫∫
∞∞

. (6) 

However, the sum 

[ ] jBjeffjBeffj )k()k(kk ∆+≡∆+≡κ . (7) 

of the two individual numerical results jeff )k(  and jB )k(∆  obtained for )S|,(keff ξx  and Bk∆ , 
respectively, is a random sample on the distribution )S|kk(F Beff ∆+ , since any numerical result 
obtained for effk  is a sample on )S|k(F eff  and any numerical result obtained for Bk∆  is a sam-
ple on )k(F B∆ . Therefore, a procedure is required which makes it possible to draw a sufficient 
number M  of different, mutually independent samples jκ  such that the probability 

)S|kk(F)S|(F Beff ∆+=κ  can be studied as a random variable. Then it becomes possible to 
determine the probability )1( α−  that the probability Sπ  given by eq. (6) meets inequality (1): 

( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
γ−≥κ

κ
κ

=γ−≥≤κ=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
γ≤κ

κ
κ

=γ≤>κ=ππ=γ≤π=α−

∫

∫∫
∞γ

)1(d
d

)S|(dFP)1()S|k(FP

d
d

)S|(dFP)S|k(FP)(pd)(P1

max

max

k

0
max

k
max

0
SSS

. (8) 

The probability )1( α−  expresses the confidence that one has in the statement that the probabil-
ity, that Beff kk ∆+=κ  exceeds maxk , is not greater than the administrative limit γ . 

Note that in case of prescribing definite values for γ  and α  the last line of expression (8) 
becomes 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
γ−≥κ

κ
κ

=γ−≥αγ≤κ=α− ∫
αγ

)1(d
d

)S|(dFP)1()S|),(k(FP1
),(k

0

, (9) 

where the integration limit ),(k αγ  is the so-called “one-sided )1/()1( α−γ−  tolerance limit” of 

Beff kk ∆+  (e. g., for 05.0=α=γ  the one-sided upper 95%/95% tolerance limit). 
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1.2 Determination of a confidence level (1-α) at unknown probability distribution 
F(keff+∆kB) 

Since the numerical results jκ  defined by eq. (7) do not depend on the subscript j  the notation 
can be chosen such that a set { }M,,1j,j K=κ  of M  samples can be arranged in an order statistic 

M1M21 κ≤κ≤≤κ≤κ −K .  (10) 

According to the previous section the results iκ  are assumed to be mutually independent, which 
is in fact the usual case. Thus, the probability of occurrence of a result iκ  does not depend on the 
occurrence of any of the other results ij,j ≠κ . So therefore, the probability that )1i( −  values are 
smaller than iκ , that the value iκ  occurs, and that )iM( −  values are greater than iκ  amounts to  

∏
=

λ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λλλ

=−=λ=λ−=λ
3

1j
j

321
321

jP
M

)iM,1,1i(P , 

where 

)1iM()i(
)1M(

)!iM(!1)!1i(
!M

!!!
!MM

321321 +−ΓΓ
+Γ

=
−−

=
λλλ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λλλ

 

is the number of realizations of grouping M  samples into the three groups of size 1i1 −=λ , 
12 =λ , and iM3 −=λ , respectively. 

The probabilities 3,2,1j,Pj = , are related to these groups as follows: The probability 1P  related 
to the first group 1i1 −=λ  is the probability that there is one value κ  smaller than iκ , the prob-
ability 2P  related to the second group 12 =λ  is the probability that the value iκ  occurs, i. e. that 
there is one value κ  falling into the infinitesimal interval ]d,[ iii κ+κκ , and the probability 3P  
related to the third group iM3 −=λ  is the probability that there is one value κ  greater than iκ . 
Since the results iκ  are samples on the probability distribution )kk(F)(F Beff ∆+≡κ  the prob-
abilities 3,2,1j,Pj = , are given by the following expressions: 

)(FP i1 κ= , 

iii2 d)()(dFP κκϕ=κ=  with iii d/)(dF)( κκ=κϕ , 

)(F1P i3 κ−= . 

The pdf of iκ  becomes, therefore, 

[ ] [ ] )()(F1)(F
)1iM()i(

)1M()(f i
iM

i
1i

ii κϕκ−κ
+−ΓΓ

+Γ
=κ −− . (11) 
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Using the transformation 

∫
κ

∞−

κκϕ=κ=
i

iii
~d)~()(FF ,  

the pdf eq. (11) can be transformed into a pdf )F(h  with F  regarded as a random variable. 
Because of 

ii d)(fdF)F(h κκ=  and 
)(
)(f

d
dF

)(f)F(h
i

i

i

i

κϕ
κ

=

κ

κ
= , )F(h  becomes 

[ ] 1b1a F1F
)b()a(

)ba()b,a;F(h)F(h −− −
ΓΓ
+Γ

== . (12) 

with 

ia ≡  and 1iMb +−≡ . (13) 

Since being a probability, F is only defined on the interval ]1,0[ . Therefore, according to eq. (12), 
the probability F  taken as a random variable, follows a Beta-distribution, cf. Ref. [1]. This is a 
remarkable result because it has been stated above that F  remains unknown, in general, apart 
from the fact that F  is a probability and hence defined on the interval ]1,0[ , i.e. ]1,0[F∈ . 

The integration problem eq. (8) can now be solved, in fact. As follows from eq. (8), the probabil-
ity ( ))1(FP γ−<  that F  is less than )1( γ−  is just α . So therefore, using eq. (12), α  becomes 

( ) )b,a(I
)b,a(B

)b,a(B
)F(hdF)1(FP )1(

)1(
1

0
γ−

γ−
γ−

≡==γ−<=α ∫ , (14) 

where )b,a(B )1( γ−  denotes the incomplete Beta function [2] and  

)ba(
)b()a()b,a(B

+Γ
ΓΓ

=  (15) 

is the complete Beta function [2]. Applying the relationship between the incomplete Beta func-
tion and the binomial expansion )b,a(I )1( γ−  (cf. Ref. [2]), eq. (14) becomes, using definition 

eq. (13), 

mMm
M

im
)1( )1(

m
M

)1iM,i(I −

=
γ− γγ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+−=α ∑ . (16) 

This equation provides for each member iκ  of the order statistic eq. (10) a probability 
);( ii γκα=α  as a function of γ . So therefore, for a specified probability γ  the confidence level 

)1( iα−  can be calculated for the greatest iκ  value which just meets the inequality maxi k≤κ ; 
and it can be checked then whether )1( iα−  is sufficiently large or not. (Note, usually specific 
figures are administratively prescribed for γ  and α .) 
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For Mi =  eq. (16) becomes 
M)1( γ−=α . (17) 

So therefore, if α  shall not exceed a certain value 0α  and γ  shall not exceed the administrative 
margin 0γ , then the minimum required number M  of samples jκ , eq. (7), amounts to 

)1(log
)(log)Mmin(
0

0

γ−
α

= . (18) 

After having clarified that the confidence )1( α− , defined by eq. (8), can be determined even if 
the probability distribution )S|kk(F)S|(F Beff ∆+=κ  is unknown, it is time now to develop the 
procedure required to draw a sufficient number of samples [ ]jBeffj kk ∆+=κ  on )S|(F κ . 

1.3 Reflections on the information needed and the information flow required 

As stated in section 1.1, the probability distribution )S|(F κ  is determined by  

• the probability density functions of the material and design data Sx  and Bx  of the system S of 
interest and the benchmarks (B), respectively, selected for estimating the bias Bk∆ as well as  

• the probability density function of the nuclear data ξ  related to the system S.  

Since these probability density functions are unknown, in general, the sampling procedure 
sought-after must have the capability to gain information on these probability density functions 
from empirical data or quantities derived from empirical information or nuclear reaction models. 
About the flow of required information on Sx , Bx  and ξ  the following reflections can be made: 

• The task in criticality safety analysis usually is to demonstrate that a given nuclear fuel system 
S meets inequality (8) at the administrative limit γ  with a sufficiently large confidence level 

)1( α− . 

• For this purpose criticality calculations are performed using a specific criticality calculation 
code with a specific nuclear data library. 

• Possible biased errors in the applied nuclear data as well as algorithmic und numerical weak-
nesses of the employed criticality calculation code may result in a non-zero bias Bk∆  in the 
calculated effk  values. This bias Bk∆  is characteristic of the employed nuclear data library 
and the used criticality calculation code with respect to the system S  of interest. 

• In order to be able to determine the bias Bk∆  that applies to the system S  under the given 
nuclear data library and the given calculation code, it is necessary to analyze benchmark con-
figurations which are similar to the application case S  with respect to neutron physics proper-
ties and hence representative for the system S . The representativeness of a benchmark B with 
respect to S  can be measured by the correlation between the neutron multiplication factors 

Bk  of the benchmark and Sk  of the system 
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( ) T
SB )(k,kcorr ΛξcovΛ∝ , (19) 

 as obtained in first-order perturbation theory [3]. )(ξcov  in eq. (19) denotes the covariance 
matrix of the nuclear data, and Λ  is the vector of the sensitivities 

ν

ν
ν ξ∂

∂ξ
= c

c
c

k
k

Λ ,    
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
S

B
c , (20) 

 of Bk  and Sk , respectively, to the nuclear data ξ . 

• Since the bias Bk∆  of interest is that one which is characteristic of the combined use of the 
given nuclear data library and the given criticality calculation code with respect to the system 
S, there is no need for considering the uncertainties in the nuclear data ξ  when calculating the 
set { }BiBB N,...,1i,)k(S =∆  of bias values eq. (5) for the set of the representative benchmarks 
selected. The bias Bk∆  is in fact related, at given neutron energy E, to the use of fixed values 

)E(νξ  from the employed nuclear data library by the applied calculation code when calculat-
ing the neutron multiplication factor Sk  of the system of interest. 

• The uncertainties in the material and design data Bx  of the benchmarks have to be taken into 
account, since they lead to uncertainties of the iB )k(∆  values observed for the benchmarks 

BN,...,1i = . 

• Since the correlation coefficients eq. (19), ( )SiB k,)k(corr , are less than 1, i. e., since the 
benchmark configurations BN,...,1i =  are similar but not equal to the system S with respect to 
neutron physics properties, a model is required which is capable to derive the bias Bk∆  related 
to the system S from the results iB )k(∆  obtained for the benchmarks BN,...,1i = , taking into 
account the uncertainties in iB )k(∆  due to the uncertainties in the data Bx . For this purpose a 
set z  of explanatory variables is required which characterizes the benchmarks BN,...,1i =  as 
well as the system S: izz = , BN,...,1i = , and Szz = , respectively. The required model there-
fore consists in a trending analysis )(kk BB z∆=∆  concluding from the points iz  in the z -
space to the point Sz  in this space. 

• The procedure used to estimate the neutron multiplication factor Sk  of the system S must 
include consideration of the uncertainties in the material and design data Sx  of the system. 

• In addition, the procedure used for estimating Sk  must include consideration of the uncertain-
ties in the nuclear data ξ . It is in fact the application case S for which the impact of the uncer-
tainties in ξ  on the neutron multiplication factor is of interest.  

Part of the elements of the system’s material and design vector Sx  characterizes the nuclear fuel 
in the system S. Application of burnup credit to the system S significantly increases the number 
of elements of Sx  describing the fuel characteristics and introduces additional uncertainties 
related to the estimation and validation of the fuel composition as a function of initial enrichment 
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and burnup. Therefore, to get a full picture of the flow of required information on the parameters 
Sx , Bx  and ξ , a complete overview of the sources and the hierarchy of uncertainties is needed. 

This overview is given in the next section. 

2 Sources and hierarchy of uncertainties 

A burnup credit criticality safety analysis consists in implementation of two key steps: 

• Depletion analysis: Estimation and validation of the isotopic composition of the fuel 

• Criticality analysis: Estimation and validation of the neutron multiplication factors for evaluat-
ing the loading criterion (e. g., the loading curve indicating the minimum burnup required for 
fuel with a specific initial enrichment to be loaded in the system S of interest) 

Accordingly, the uncertainties in effk  arising for the depletion analysis can be distinguished from 
the uncertainties arising from the criticality analysis. 

2.1 Depletion analysis 

The upper part of Figure 1 summarizes the sources and the hierarchy of uncertainties arising out 
the depletion analysis: 

• The estimation of the fuel’s isotopic composition as a function of initial enrichment and 
burnup is performed by means of depletion calculations. Due to possible biased errors in the 
nuclear data applied to the depletion calculations and due to algorithmic and numerical weak-
nesses in the employed depletion calculation code, the calculated isotopic number densities 
may be biased. 

• To validate the depletion calculations and to eliminate the biases in the isotopic number densi-
ties, comparisons between predicted, i. e. calculated, and measured isotopic concentrations are 
made. The measured isotopic concentrations are obtained from chemical assays of samples 
from irradiated fuel. Accordingly, the comparison of calculated to measured concentrations 
inevitably introduces 

− all the uncertainties in the measured concentrations arising from the applied assay methods 
and 

− all the uncertainties in the parameters (such as irradiation history and burnup of the fuel 
samples) required to perform the calculations. 

The uncertainties in the parameters needed for performing the calculations lead to uncertain-
ties in the calculated concentrations. 

• Isotopic Correction Factors (ICFs) are derived from the statistics of comparisons between 
measured and calculated isotopic concentrations. Due to the uncertainties in these concentra-  
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Figure 1: Hierarchy of uncertainties in burnup credit criticality safety analysis 
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 tions the ICFs have uncertainties that have to be considered when the ICFs are applied to the 
isotopic number densities calculated for the application case, i. e. for the fuel to be loaded in 
the system S: 

)S(
ii.corr

)S(
i N)ICF(]N[ ⋅= , (21) 

 )S(
iN := number density of the i-th isotope calculated for the application case S, and 

.corr
)S(

i ]N[ := ”bias-corrected” number density of this isotope. 

• There is no need to consider the uncertainties in the nuclear data in the evaluation of the ICFs 
because the isotopic biases to be corrected by applying the ICFs are those which are charac-
teristic of the combined use of the given nuclear data library and the given depletion calcula-
tion code with respect to the neutron spectrum of the application case. 

• However, the uncertainties in the nuclear data have to be considered, in principle, in the cal-
culation of the isotopic number densities )S(

iN  of the application case. 

• With respect to the calculation of these number densities )S(
iN , uncertainties in the irradiation 

history have to be taken into account only in so far as they have to be covered by a bounding 
irradiation history required in the analysis of the application case [4]. 

2.2 Criticality analysis 

As appears from Figure 1, the bias-corrected number densities and their uncertainties are input to 
the criticality analysis. All the other uncertainties related to the determination of the effk  value of 
the system S of interest (application case) and the bias Bk∆  of the employed criticality code with 
respect to S are summarized in the lower part of Figure 1. These uncertainties were already 
discussed in detail in section 1.3. 

3 Hierarchical Bayesian Monte Carlo procedures 

The flow of the information on the random vectors Sx , Bx  and ξ  required for solving eq. (8) has 
to follow the hierarchy of uncertainties presented in Figure 1. The uncertainties in the parameters 
related to some level in that hierarchy determine the uncertainties of the parameters of the fol-
lowing level. Figure 2 gives an example related to the validation of the depletion calculations: 

The uncertainties in the measured and the calculated isotopic concentrations determine the 
uncertainties of the ICFs; the uncertainties of the ICFs impact the uncertainties of the isotopic 
concentrations of the application case S; and these uncertainties contribute to the uncertainty of 

)S(kk effeff = . So, in generalized terms, as illustrated in Figure 3, to gain information on the 
uncertainty ),( baxx =  depending on the parameters a  and b  of the preceding hierarchical level 
information about the parameters aΘ  and bΘ  is required characterizing the probability density 
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distributions )|(p aΘa  and )|(p bΘb  which determine the expectation values and the variances 
and covariances of the components of a  and b , respectively, according to the expressions given 
in the following equations: 

• Expectation ][E iη  of iη : i,d)|(p][E ii ∀η=η ∫
Ωη

ηΘη η , (22) 

 where iη  stands either for the i-th component of a  or the i-th component of b , so that η  
stands either for a  or b . 

• Covariance ),cov( ji ηη  of the components iη  and jη  of η : 

( ) ( )[ ] ( ) ( )∫
Ω

η−η⋅η−η=η−η⋅η−η=ηη
η

ηΘη η d)|(p][E][E][E][EE),cov( jjiijjiiji , ji∧∀ , (23) 

ηΩ  in equations (22) and (23) denotes the definition region of η . 

For ji =  eq. (23) gives the variances )( i
2 ησ  of η , 

( ) i,d)|(p][E),cov()( 2
iiiii

2 ∀η−η=ηη≡ησ ∫
Ωη

ηΘη η . (24) 

 
Figure 2: Example for the dependency of the uncertainties of the parameters of a given level on the 

uncertainties of the parameters of the preceding level in the hierarchy of uncertainties 
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Figure 3: Illustration of the information flow required for the estimation of the uncertainties in the 

parameters of the different levels in the hierarchy of uncertainties 

The correlation ),(corr ji ηη  (also named as “correlation coefficient”) of the components iη  and 

jη  of η  is defined by the expression given in eq. (25), 

ji,
)()(

),cov(
),(corr

j
2

i
2

ji
ji ∧∀

ησησ

ηη
=ηη . (25) 

If the variables iη  are mutually independent, the covariance and the correlation vanish for ji ≠ . 
(The converse statement is not necessarily true.) The random variables are mutually independent 
if and only if their joint pdf is completely factorizable as 

)|(p),...,|,,(p)|(p
m

1i
iiim1m1 ∏

=

η=ηη≡ ΘΘΘΘη K .   

with ),...,()Θ,...,Θ( m1n1 ΘΘΘ == , ∑
=

===
m

1i
ii,ni,1i nn,n,...,1i,)Θ,...,Θ(

i
Θ . 

In matrix notation the expectation values (means), eq. (22), of the components are summarized in 
the expectation (mean) vector 

( )Tm1 ][E,],[E][ ηη= KηE ,  (26) 

and the variances, eq. (24), and covariances, eq. (23), are summarized in the covariance matrix 
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⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ησηηηη

ηηησηη
ηηηηησ

=≡

)(),cov(),cov(

),cov()(),cov(
),cov(),cov()(

)()(

m
2

2m1m

m22
2

12

m1211
2

L

MOMM

L

L

ηVηcov .  (27) 

Since ),cov(),cov( ijji ηη=ηη  by definition (cf. eq. (23)), the matrix )(ηcov  is symmetric, i. e., 

)()( T ηVηV = . 

Let us assume that the parameters aΘ  and bΘ , and hence the pdfs )|(p aΘa  and )|(p bΘb , are 
known (e. g., for a multivariate Gaussian density )|(p ηΘη  the parameter set ηΘ  is given by 
equations (26) and (27), i. e. ( ))(],[ ηcovηEΘη = ). Then Monte Carlo (MC) samples MCa  and 

MCb  on a  and b , respectively, can be drawn from the respective pdfs. If all the functional rela-
tionships ),( baxx = , )(xyy =  and )(yzz =  mentioned in Figure 3 can be solved analytically 
then insertion of the draws MCa  and MCb  in ( )( )),( baxyzz =  yields a set of MC samples { }MCz  
and hence an empirical distribution of z . From this distribution information on the parameters 

zΘ  of the pdf )|(p zΘz  can be derived which may be useful for evaluation or further applica-
tion. If each of the relationships ),( baxx = , )(xyy =  and )(yzz =  can only be solved numeri-
cally, the following can be stated: Use of the draws MCa  and MCb  in the numerical procedure 

applied to solve ),( baxx =  provides a set of MC samples { })num(
MCx  and hence an empirical distri-

bution of x . From this distribution information on the parameters xΘ  of the pdf )|(p xΘx  can 
be derived which can be used to draw MC samples )p(

MCx  on )|(p xΘx . These samples are 
inserted in the numerical procedure employed for solving )(xyy = . The set of MC samples 
{ })num(

MCy  thus obtained provides information on the parameters yΘ  of the pdf )|(p yΘy , which 

can be used to draw MC samples )p(
MCy  on )|(p yΘy . These samples are now used in the numeri-

cal procedure applied to solve )(yzz = ; a set { })num(
MCz  of MC samples is thus obtained which pro-

vides information about the parameters zΘ  of )|(p zΘz . 

The upper part of Figure 4 illustrates the just outlined MC procedure for two consecutive levels 
of a hierarchy of uncertainties: MC samples )p(

MCx  are drawn form the definition region of x . 
These MC samples are used in the analytical or numerical procedure to be employed for solving 

)(xyy = . An empirical distribution of y  is thus obtained which can be used for further evalua-
tions. 

However, to be able to perform MC sampling on the definition region of x , the pdf )|(p Θx  and 
hence the parameter set xΘΘ ≡  has to be known. However, such pdfs are usually unknown. In 
particular, as already stated in section 1.1, the pdfs of those parameters are usually unknown 
which refer to top levels of the hierarchy of uncertainties presented in Figure 1. Therefore, it is 
necessary to gain knowledge about the parameters Θ  from empirical data. 
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Figure 4: Illustration of the concept of Bayesian Monte Carlo procedures 
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Let us assume that the data matrix X  represents n  independent identically distributed observa-
tions of the parameters ( )Tm1 x,,x K=x  of interest drawn to gain information on the unknown 

parameters ( )Tr1 ,, ΘΘ= KΘ : 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nm2n1n

m22221

m11211

T

xxx

xxx
xxx

L

MOMM

L

L

X . (28) 

According to Bayes’ theorem [1] the posterior knowledge about Θ , i. e., the knowledge gained 
from the empirical data X  is represented by the posterior pdf )|(p XΘ  according to eq. (29), 

)(p)|(p
)(p)|(pd

)(p)|(p)|(p

)(

ΘΘX
ΘΘXΘ

ΘΘXXΘ

Θ

∝=
∫

Ω

, (29) 

where )(ΘΩ  denotes definition region of Θ . 

As indicated in Figure 4, )(p Θ  is the prior pdf representing the knowledge about Θ , if there is 
some, prior to the information contained in X . If there is no prior knowledge available, a so-
called “non-informative” prior is chosen for )(p Θ , cf. References [5] through [7]. )|(p ΘX  
represents the Likelihood function of the observations X  under Θ . )|(p ΘX  is not a pdf, but a 
function of Θ  only, determining the amount of information )(ΘI X  of X  about Θ , [1], 

[ ] m,,1j.i,)|(pln)|(plnE)(
ji

ij K=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Θ∂
∂
⋅

Θ∂
∂

=
ΘXΘXΘI XX . (30) 

Despite this information the parameters Θ  remain random parameters in general, whatever the 
size n  of the samples (observations) T

im1ii )x,,x( K=x  might be. In fact, it is not possible, in 
general, to obtain a set of certain values 0Θ  from a finite sample of any size n . This fundamental 
uncertainty due to the finite number n  is expressed by the fact that the posterior pdf )|(p XΘ  is a 
pdf which is, in general, different from a delta distribution )( 0ΘΘ −δ . Thus, for any region R 
falling into the definition region )(ΘΩ , i. e. )(R ΘΩ⊆ , the probability 

∫=∈
R

)|(pd)|R(P XΘΘXΘ  (31) 

remains less than 1 (and is equal to 1 for )(R ΘΩ= ). Θ  under X  is completely defined by the 
probability given in eq. (31). 

So therefore, to be able to perform MC sampling on the definition region of x , first MC samples 
MCΘ  from the posterior pdf )|(p XΘ  have to be drawn. The samples can then be used in the pdf 

model )|(p Θx  so that MC samples MCx  under the condition of the empirical data X  are drawn 
according to the so-called “posterior predictive pdf” 
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∫
Ω

=
)(

MCMC )|(p)|(pd)|(p
Θ

XΘΘxΘXx . (32) 

Note that a probability distribution model )|(p Θx  is needed for evaluating the empirical data 
according to eq. (29). This brings in a further fundamental uncertainty due to the selection of 
probability distribution models. However, this uncertainty can be reduced, if not actually sur-
mounted, by performing sensitivity studies on the use of different distribution models. 

As appears from the Bayes’ theorem eq. (29), the use of Bayesian MC procedures requires the 
definition of a prior pdf )(p Θ . Accomplishment of this requirement involves the probability-
theoretical problem of the Bayesian methodology, see Appendix to this paper. 

For those who are not so familiar with Bayesian MC procedures the principle of such procedures 
is illustrated by means of a simple example shown in Figure 5: Let us assume that we want to 
draw MC samples MCx  on the one-dimensional parameter x  according to eq. (32), where X  

reduces now to the vector of observations ix , n,,1i K= : ( )Tn1obs x,,x K=x . Whatever the pdf 
)|(p Θx  of the random variable x  might be, the sample mean of the observations ix  is given by  

∑
=

=
n

1i
ix

n
1x  (33) 

and the corresponding sample variance is given by 

∑
=

−
−

=σ
n

1i

2
i

2 )xx(
1n

1ˆ . (34) 

Let us assume that we can justify that obsx  represents n  observations on a Normal distribution 

with unknown expectation (mean) µ  and unknown variance 2σ , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σ
µ−

−
πσ

=σµ≡σµ= 2

2

2
22

2
)x(exp

2

1),(N),|x(p)|x(p Θ . (35) 

With equations (33) and (34) the Likelihood in eq. (29) thus becomes 

( )

( )

( ) .
ˆ

)1n(
2
1exp

n/
)x(

2
1exp

2
1

)xx(
2
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)x(
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2
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2
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2
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2
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⎠

⎞
⎜
⎝

⎛
−

σ
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⎞
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⎝

⎛
σ
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−
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=

⎟
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⎞
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⎝
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µ−

σ
−

πσ
=σµ=

∑

∑

=

=

xΘx

 (36) 

Let us assume that no prior knowledge about ),( 2σµ=Θ is available. Accordingly, the com-
monly proposed non-informative prior density 
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22 ),(p −σ∝σµ  (37) 

is chosen (cf. eq. (A-39) in the Appendix to this paper). 

Multiplying the Likelihood eq. (36) with this prior density results, according to eq. (29), in the 
posterior density 

( ) )|(p,|p)|,(p obs
22

obsobs
2 xxx σ⋅σµ∝σµ , (38) 

where ),|(p 2
obs σµ x  is the Normal pdf 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

µ−
−

πσ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ
=σµ

n/
)x(

2
1exp

2
n

n
,xN),|(p 2

2

2

2
2

obsx  (39) 

and )|(p obs
2 xσ  is the Inverse-Wishart pdf (cf. equations (A-12) and (A-40) in the Appendix) 

( ) ( )

)ˆ),1n(|(Inv

ˆ
)1n(expˆ)1n(

2
1n2

)1m;1n;ˆ)1n((WishartInv)|(p

222

2

2
2/)21n(22/)1n(2

1

2
1n

21
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2

σ−σχ−=

⎟⎟
⎠

⎞
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⎝

⎛
σ
σ

−−σσ−⎥
⎦

⎤
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
⎛ −

Γ⋅=

=−σ−−=σ

+−−−
−−

−−x

 (40) 

with )1n( −  degrees of freedom and scale factor 2ˆ)1n( σ− . As indicated in eq. (40), in the one-
dimensional case )1m( =  the Inverse-Wishart distribution is identical with the scaled Inverse-

2χ -distribution with )1n( −  degrees of freedom and scale factor 2σ̂  [6]. 

Eq. (39) says that the unknown mean µ  follows a Normal distribution with expectation x  and 
variance n/2σ , which is unknown since 2σ  is unknown. However, eq. (40) tells that the 
unknown 2σ  follows a scaled Inverse- 2χ -distribution with )1n( −  degrees of freedom and scale 
factor 2σ̂ , which is the known sample variance eq. (34). So therefore, as illustrated in Figure 5, 
to get an MC sample MCx  the following steps have to be taken successively: 

• Drawing of a MC sample 2
MCσ  from the pdf eq. (40) 

• Inserting of 2
MCσ  into the pdf eq. (39) and then drawing of a MC sample MCµ  from the pdf 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ
µ

n
,x|p

2
MC . 

• Inserting of MCµ  and 2
MCσ  into the pdf eq. (35) and then drawing of a sample MCx  from the 

pdf ),|x(p 2
MCMC σµ . 

To get the next sample MCx  one has to return to the first step and to repeat the procedure. 
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Figure 5: Example for a Bayesian Monte Carlo procedure 

As illustrated in Figure 5, the obtained samples MCx  can be used to solve (analytically or 
numerically, as the case may be) the relation )x(yy =  so that one gets an empirical distribution 
of samples )x(yy MCMC =  which bares information about the pdf of y . 

In the following sections the Bayesian Monte Carlo procedure summarized in eq. (32) will be 
applied to the analysis of uncertainties involved in burnup credit criticality safety analysis. The 
description of the application of the Bayesian Monte Carlo procedure follows the hierarchy of 
uncertainties shown in Figure 1. Since the paper on hand was written for a burnup credit work-
shop, the attention is mainly focused on the depletion validation issues in the following. 

4 Validation of depletion calculation 

As well-known, validation of a depletion calculation for a burnup credit (BUC) criticality safety 
analysis consists in implementation of two key steps: 

• Evaluation of chemical assay data from samples from irradiated fuel 

• Evaluation of the ICFs (isotopic correction factors) for the isotopes to be used in a BUC 
criticality safety analysis 
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4.1 Evaluation of assay data 

The evaluation of the assay data includes the following steps: 

• Evaluation of the measurement results obtained from the laboratories which performed the 
assays of the fuel samples 

• Evaluation of the burnup of the fuel samples 

• Evaluation of the calculated isotopic concentrations and of the resulting ICFs 

The notation which is used for indices in the following sections is as follows: 

• J := number of an analyzed fuel sample, FSN,...,1J = ; 

• L = L(J) := number of the laboratory which participated in the analysis of the J-th fuel sample, 
)J(N,,1)J(L labK= ; i. e., the J-th sample is divided in )J(Nlab  subsamples which are inde-

pendently analyzed by )J(Nlab  laboratories; 

• I = I(L(J)) := number of an isotope considered in the analysis of the J-th fuel sample by the 
L(J)-th laboratory, ))J(L(N,,1))J(L(I isotK= ; note that the number ))J(L(Nisot  can differ from 
laboratory to laboratory at given J. 

4.1.1 Evaluation of the measured isotopic concentrations 

The L-th laboratory that has participated in the analysis of the J-th assay delivers a set of meas-
ured isotopic concentrations (experimental results) 

( )TIJLJL1JL ),(E,),(E)( KK pppE = , ))J(L(N,,1I isotK= . (41) 

The vector p  in eq. (41) denotes the set of experimental parameters on which the estimation of 
the isotopic concentrations IJLE  has been based. Kind and number of these parameters depend on 
the applied experimental analysis methods and devices and may therefore vary with L and J. 

Let us assume that the laboratory has repeated the measurement of the isotopic concentrations N 
times and that the results )(EIJL p  in eq. (41) represent the sample means 

( )∑
=

=
N

1n
nIJLIJL )(E

N
1)(E pp  (42) 

of the single results ( )nIJL )(E p . The covariance of the sample means, eq. (41), becomes therefore 

( )∑
=

=
N

1n~,n
n~JLI~nIJL2JLI~IJL ))(E(,))(E(cov

N
1))(E),(Ecov( pppp , ))J(L(N,,1I~,I isotK= . (43) 

Assuming that each of the functions nIJL ))(E( p  can be expanded about the sample means 
T

nn2n1n )p̂,,p̂,p̂(ˆ ρ= Kp  in a Taylor series 
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and assuming that terms of order 1m
1i

i >λ=∑
ρ

=

 can be ignored, eq. (43) becomes 
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The N measurements are usually performed in such a way that they are mutually independent. 
Thus )p,pcov( n~n µν  in eq. (45) becomes n~,nn~nn~n )p,pcov()p,pcov( δ= µνµν  and hence 
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For the case that the parameters νp  are mutually independent eq. (46) reduces to 
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The expressions eq. (46) or, as the case may be, eq. (47) are the elements ( ) I~IJLS  of the covari-

ance matrix JLS  of the vector )(JL pE  of observations eq. (41). 

So therefore, for the determination of the uncertainties of the bias-corrected number densities 
eq. (21) it is a crucial step (cf. Figure 1) to determine the elements of the covariance matrix JLS  
very carefully, i. e., 

• to take all the contributions to the covariances eq. (46) or eq. (47) and hence to the correlations 
of the results IJLE  and JLI~E  into account (e. g., the contribution due to the uncertainty of the 

assay mass used in a measurement) and 

• to check whether terms of order 1)...(m 1 >λ++λ= ρ  of the Taylor series expansion eq. (44) 

can really be ignored or not. If not, the Taylor series expansion with the required order m  has 
to be inserted into the definitions of the expectation and the covariance (cf. equations (22) and 
(23), for instance) to get the expressions for the mean values IJLE  and the covariances 

)E,Ecov( JLI~IJL  which have to be applied in case of 1m > . 

The number N  of measurements usually amounts to 1, 1N = . If a fuel sample is divided in sub-
samples it is in fact preferable to give the subsamples to different laboratories, because it has 
been observed many a time that results from different laboratories are incompatible, i. e., that a 
statistical compatibility test [1] of these results leads to the outcome that the hypothesis under test 
that these results have one and the same expectation is rejected. Very often no explanation of the 
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observed incompatibilities can be given; and so these incompatibilities have to be considered in 
the validation of depletion calculations because, even if it is obvious that an observed incompati-
bility is due to the results from one particular laboratory, statistics cannot tell whether the results 
from this laboratory are wrong and the results from the remaining laboratories are right, or vice 
versa. So therefore, giving subsamples to different laboratories makes it possible to include the 
consideration of errors which may be hidden in the applied radiochemical analysis procedures. It 
is to be expected, in fact, that the results obtained by the different laboratories from the respective 
subsamples are compatible. Inexplicable incompatibility of these results can hence be understood 
as an indication of underestimation of the uncertainties of at least some of the individual sets of 
results )(JL pE , eq. (41). This underestimation can be rectified by evaluating the results from all 
the laboratories by means of on and the same probability distribution model. The use of one and 
the same probability distribution model expresses the expectation that the results from the differ-
ent laboratories shall be compatible. 

But before a joint probability distribution model can be obtained the evaluation of the results 
eq. (41) and eq. (46) or eq. (47) from the individual laboratories has to be completed. Since N in 
eq. (42) and eq. (46) or eq. (47) usually amounts to 1, there is usually not enough information 
available to gain knowledge about the parameters Θ  of the pdf underlying the outcomes of 
eq. (41). One is therefore committed to go the usual way, i. e., to assume that the vector eq. (41) 
with N = 1 in eq. (42) represents a sample on a multivariate Normal distribution. In fact, Normal-
ity is assumed because it is simple to use and, to some extent, empirically supported. With 
respect to the results from only one laboratory there are suggestions from the mathematical and 
experimental side that the assumption of Normality is at least a good approximation to the actual 
pdf [1]. 

Since no further information about the parameters Θ , i. e., about the expectation vector and the 
covariance matrix of the assumed Normal distribution model is available in case of N = 1, one is 
forced to take the sample eq. (41) and the sample covariance matrix JLS  with the elements 
eq. (46) or, as the case may be, eq. (47) for the expectation vector and the covariance matrix, 
respectively. By means of the pdf-model ),(N JLJL SE  thus assumed Monte Carlo (MC) samples 

MC
JLE  can be drawn, the variation of which represents the uncertainty of the results eq. (41) which 

has turned out to be revealable with respect to the analysis methods used by the )J(L -th labora-
tory. 

By the way, if the matrix JLS  were the actual (“true”) covariance matrix then the MC samples 
MC
JLE  drawn from ),(N JLJL SE  would be samples on the actual (“true”) expectation vector 

][ JLEE  of ),(N JLJL SE  because of the symmetry of the covariance form of )],[(N JLJL SEE . 

The MC samples MC
JLE  are used in the next steps to be taken to obtain the required ICFs. 
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4.1.2 Evaluation of the burnup 

The next step to be taken is the evaluation of the burnup of the fuel sample to be able to deter-
mine the sample’s isotopic concentration from depletion calculations performed by means of the 
depletion calculation code of interest for the sample’s irradiation history. 

The following cases have to be distinguished: 

(a) Each laboratory L = L(J) that participates in the analysis of the J-th fuel sample has estimated 
the burnup value from measured isotopic concentrations JLEν  of burnup indicators (as 
Nd-148, for example). 

(b) The burnup value of the J-th fuel sample has been calculated only, i. e., none of the laborato-
ries has estimated the burnup from any measurement results. 

(c) Only part of the laboratories accomplished the estimation of the sample’s burnup according 
to (a). 

4.1.2.1 Case (a) 

In case (a) the results JLEν  are part of the set of outcomes presented by the vector )(JL pE , 

eq. (41). For each burnup indicator a MC sample MC
JLEν  is thus included in the MC sample vector 

MC
JLE  drawn from the model ),(N JLJL SE  as described in section 4.1.1. So therefore, insertion of 

the MC sample value MC
JLEν  into the relation 

)c(gB νν=  (48) 

of the Burnup B to the isotopic concentration νc  of the ν -th burnup indicator provides a MC 

sample MC
JLBν  for the burnup: 

)E(gB MC
JL

MC
JL ννν = , )L(,,1 β=ν K . (49) 

)L(β  in eq. (49) denotes the number of burnup indicators considered by the L-th laboratory. 

It is to be expected that the actual burnup of the fuel sample can be assumed to be sufficiently 
well-defined. Otherwise it would be highly unlikely that the sample is appropriate for being 
applied to depletion calculation validation. Therefore, the set of outcomes { })L(,,1,BMC

JL β=νν K  
can be taken for a sample of size )L(β  on the underlying burnup pdf. Because of being relations 
for burnup indicators, the relations eq. (48) can be assumed to be linear functions of the form 

ννν ⋅== ca)c(gB v  (50) 

with a factor νa  which  

• depends on parameters such as the irradiated fuel mass, the energy released per fission, as well 
as the fission yield of the ν -th burnup indicator, its atomic mass and, in case that this indicator 
is not stable, its radioactive decay constant, but which  
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• does not depend on νc . 

It follows therefore that B given by eq. (50) is a Normal variable (cf. section 4.2.2 in Ref. [1]). In 
section 4.1.1 it has been assumed that the variables JLEc νν ≡  are Normal variables. So therefore, 
the set of MC samples { })L(,,1,BMC

JL β=νν K  resulting from eq. (50) according to eq. (49) can be 
taken for a sample of size )L(β  on the Normal pdf ])B[V],B[E(N])B[V],B[E|B(p JJJJJ =  of 
the burnup JB  of the J-th fuel sample.  

The expectation ]B[E J  and the variance 2
JJ

2
J )B(]B[V σ=σ=  remain unknown.  

If the size )L(β  amounts to 1, 1)L( =β , there is nothing more to be done, i. e., one stays with  
MC
JL1

MC
JL BB ≡  for 1)L( =β  (51) 

as MC sample on the burnup.  

But in case of 1)L( >β  the Bayesian MC procedure for one-dimensional random variables 
described in section 3 can be employed (cf. equations (33) through (40) and Figure 5): 

• The sample mean  

∑
β

=ν
νβ

=
)L(

1

MC
JLJL B

)L(
1B , 1)L( >β , (52) 

 and the sample variance 

∑
β

=ν
ν −

−β
=σ

)L(

1

2
JL

MC
JL

2
JL )BB(

1)L(
1ˆ , 1)L( >β , (53) 

 are evaluated (cf. eq. (33) and (34)). 

• A MC sample MC2
JL )(σ  on the variance ]B[V J  is drawn from the scaled inverse- 2χ -distribu-

tion )ˆ;1)L((Inv 2
JL

2 σ−βχ−  (cf. eq. (40) and Figure 5). 

• Insertion of MC2
JL )(σ  into the pdf ))L(/]B[V,B(N JJL β  (cf. eq. (39)) and draw of a MC sam-

ple MC
JL ]B[E  on the expectation ]B[E JL  from the resulting pdf ))L(/)(,B(N MC2

JLJL βσ  
(cf. Figure 5). 

• Insertion of MC
JL ]B[E  and MC2

JL )(σ  into the pdf ])B[V],B[E(N JJ  (cf. eq. (35) and Figure 5) 
and draw of a MC sample 

MC
JLB  from ))(,]B[E(N MC2

JL
MC

JL σ  for 1)L( >β . (54) 

One may raise criticism of the taken route of evaluating the results JLEν , )L(,,1 β=ν K , from the 
different laboratories )J(N,,1)J(LL labK==  separately. In principle one can put in fact the 
results JLEν  from the different laboratories for each of the burnup indicators v  together because 



24 

the expectation ]B[E J  is, as already stated above, to be expected to be applicable to all the 
burnup values JLBν  resulting from )E(gB JLJL ννν =  according to the relations eq. (48). However, 
if one put the results JLEν  from the different laboratories together the question immediately 
arises why one does not proceed in the same way with all the results )(JL pE , eq. (41), from the 
different laboratories. The answer to this question is that evaluating the results )(JL pE  from the 
different laboratories separately is more powerful than averaging these results, because evaluat-
ing the outcomes )(JL pE  separately ensures that the maximum possible amount of experimental 
information can be made available for the estimation of the ICFs of those nuclides which are 
actually used in an actual burnup credit application case, cf. section 4.2. 

Case (a) was defined as the case that each laboratory has estimated the burnup value from the 
results JLEν  obtained for the burnup indicators )L(,,1 β=ν K . So, the question naturally arises 

why the drawing of burnup MC samples MC
JLBν  is based, according to eq. (49), on the drawing of 

MC samples MC
JLEν  from the distribution model ),(N JLJL SE  of the complete set JLE  of measured 

isotopic concentrations instead of being based on a distribution model of the burnup already 
estimated by the L-th laboratory. Let us assume that this laboratory has delivered the estimated 
burnup in form of the total average 
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So therefore, the variance of this estimate is 

( ) ( )∑∑
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=
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JLJL2
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)L(
1]B̂[V . (56) 

Even if one makes the pretty idealized assumption that all the covariances ( )JLJL E,Ecov µν  are 

really considered the following statement has to be recognized: If the burnup MC samples are 
drawn from a Normal distribution model with the estimate eq. (55) as expectation and with the 
estimate eq. (56) as variance then, in contrast to the procedure described above, only the part 

JLββ)(S  of the empirical covariance matrix JLS  is involved, 
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S , (57) 

• JLββ)(S  is the covariance matrix with the elements ( )JLJL E,Ecov µν  of the burnup indicators, 
)L(,,1, β=µν K  

• JL)( ααS  is the covariance matrix related to the remaining isotopes called “nbi-isotopes” (i.e., 
“non-burnup-indicator-isotopes”) in the following, )L())J(L(Nisot β−=α , and 

• JL)( αβS  contains covariances between these nbi-isotopes and the burnup indicators. 
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The actual (i. e. “true”, but unknown) concentrations of all the isotopes are functions of the fuel 
sample’s burnup at given irradiation history. All experimental results )(JL pE , eq. (41), contain 
therefore empirical information about the burnup of the fuel sample. Consequently, if only the 
partial matrix JLββ)(S  is involved all the information is lost which is transmitted by means of the 
partial covariance matrix JL)( αβS  from the nbi-isotopes to the burnup indicators. Since the num-
ber β  of burnup indicators is usually significantly smaller than the number α  of nbi-isotopes the 
loss of information can be heavy, the heavier the higher the correlations between nbi-isotopes and 
burnup indicators are. So therefore, drawing MC samples MC

JLE  for all the isotopes from the 

distribution model ),(N JLJL SE  and then using the MC samples MC
JLEν  for the burnup indicators 

included in MC
JLE  for obtaining MC samples MC

JLB  on the burnup according to eq. (51) or eq. (54) 
is a much more powerful procedure since it makes use of all the available experimental informa-
tion. 

4.1.2.2 Case (b) 

Case (b) may be regarded as a case that results in misbegotten outcomes since the available 
burnup information is not blessed by any experimental information from the chemical analysis of 
the fuel sample of interest. However, since no further information is available one is committed 
to go the usual way, i. e., to assume that the burnup JB  of the J-th fuel sample follows a probabil-
ity distribution )|B(p J Θ . Neither the type nor the parameters Θ  of )|B(p J Θ  can be really 
fixed here, since they depend on the procedure used for calculating the burnup of the fuel sample. 
However, what can be done here is to suggest to evaluate the whole amount of validation data, 
which has been compiled for the applied burnup calculation procedure, as indicated in Figure 6: 

• Plot the frequency of occurrence )BB(H MP −  of the observed deviations MP BBB −=∆  of 
the predicted (calculated) burnup PB  from the measured burnup MB  against MP BBB −=∆ . 

• Derive an empirical pdf )ˆ|B(h B∆∆ Θ  ( B
ˆ
∆Θ  denotes the resulting estimate of the “true” distri-

bution parameters B∆Θ ) by using one of the methods described in Ref. [1], sections 11.2 
through 11.4. 

The empirical pdf )ˆ|B(h B∆∆ Θ  is usually expected to be a Normal pdf. In fact, there are sugges-
tions from the mathematical as well as from the empirical side that the assumption of Normality 
for )ˆ|B(h B∆∆ Θ  is at least a good approximation to the actual pdf )|B(h B∆∆ Θ . 

If this true, then 

( ))B(s,Bˆ 2
B ∆δ=∆Θ , (58) 

where Bδ  is the expectation value of the empirical distribution )ˆ|B(h B∆∆ Θ  (cf. Figure 6) and 
)B(s2 ∆  denotes the variance of this distribution. The distribution of the burnup JB  of the J-th 

fuel sample can then be approximated by the Normal pdf ( ))B(s,BBN 2)c(
J ∆δ−  with expectation 
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BB )c(
J δ− , where )c(

JB  is the burnup calculated for the J-th fuel sample. Therefore, by means of 

( ))B(s,BBN 2)c(
J ∆δ−  MC samples MC

JB  on the burnup JB  can be drawn: 

MC
JB  from ( ))B(s,BBN 2)c(

J ∆δ− . (59) 

If the assumption of Normality for )ˆ|B(h B∆∆ Θ  is rejected by a method chosen from Ref. [1], 
sections 11.2 through 11.4, for fitting )ˆ|B(hN B∆∆⋅ Θ  to the distribution )BB(H MP −  of the N 
observed deviations MP BBB −=∆ , then one has to stay with a “real life distribution” for 

)ˆ|B(h B∆∆ Θ . The Johnson families of empirical distributions are particularly appropriate for this 
purpose [1]. The MC samples MC

JB  can then be obtained by drawing MC samples MCB∆  from 

)ˆ|B(h B∆∆ Θ  and subtracting these samples from )c(
JB : 

MC)c(
J

MC
J BBB ∆−=  with MCB∆  from )ˆ|B(h B∆∆ Θ . (60) 

It is obvious that eq. (59) is a special case of eq. (60). 

In contrast to the MC samples eq. (51) or eq. (54), a MC sample MC
JB  obtained from eq. (59) or 

eq. (60) has to be applied to all the laboratories )J(LL =  which participated in the analysis of the 
J-th fuel sample. 

 
Figure 6: Illustration of the evaluation of the statistics of validation data  

compiled for a burnup calculation procedure 
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4.1.2.3 Case (c) 

It is obvious that in case (c) for those laboratories which accomplished the estimation of the fuel 
sample’s burnup according to case (a) laboratory-specific MC samples MC

JLB  are drawn according 
to eq. (51) or eq. (54). For all other laboratories one has to proceed according to case (b) and 
hence according to eq. (59) or eq. (60). 

In this conjunction the question naturally arises if it is possible to combine MC sample values 
MC
JB  based on calculated burnup values )c(

JB  with MC sample values MC
JLBν  based on measured 

burnup indicator concentrations. The answer is “yes” if and only if the following conditions are 
met: 

• The set of validation data, which has been applied to the validation of the burnup calculation 
procedure used for the determination of )c(

JB , must not include any information resulting from 
the analysis of the J-th fuel sample, i. e., from the fuel sample of interest. 

• The assumption of Normality for )ˆ|B(h B∆∆ Θ  must not be rejected by the method chosen 
from [1], sections 11.2 through 11.4, for obtaining )ˆ|B(h B∆∆ Θ . In other words, MC

JB  shall be 
drawn according to eq. (59). 

If these conditions are met, then and only then MC
J

)c(MC
J BB ≡  can be added to equations (52) and 

(53), which then become 
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and, respectively, 
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2
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)L(
1ˆ , (62) 

where we have written )c(MC
JB  instead of MC

JB  to make clear that this MC sample is based on the 

calculated burnup )c(
JB  and originates from eq. (59). 

So, when instead of equations (52) and (53) equations (61) and (62) are used in the above-
described Bayesian MC procedure for generating MC samples MC

JLB , then )L(β  has obviously to 
be replaced by 1)L( +β . 

4.1.3 Evaluation of the calculated isotopic concentrations 

The calculation of the isotopic concentrations of an irradiated fuel sample by means of the deple-
tion calculation code of interest is usually performed as follows: The fuel sample’s irradiation 
history is described (modeled) and the fuel is then depleted according to this history up to a fixed 
burnup value specified for the sample. Then the radioactive decay is followed as long as required, 
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i.e., till the date of chemical analysis is reached. So, one set of calculated isotopic concentrations 
is thus obtained referring to just one burnup value. However, to be able to consider the uncer-
tainty in the fuel sample’s burnup one needs the calculated isotopic concentrations 

( )TNI1 isot
c,,c,,c KK=c  as a function of the burnup, )B(cc = , for a certain burnup range the 

width of which depends on the uncertainty of the burnup. 

The burnup value up to which the fuel is depleted in a depletion calculation performed under a 
specific irradiation history is given by eq. (63), 

∑ ∫
=λ

λ

λ

=
fin )(EOC

)(BOC

L

1

t

t
S dt)t(PB , (63) 

where )t(PS  denotes the specific power history (as a function of time t), λ  numbers the irradia-
tion cycles, finL,,1K=λ , finL  is the last irradiation cycle, )(BOCt λ  is the time of the begin of the 
λ -th irradiation cycle, and )(EOCt λ  is the time of the end of this cycle. Due to the downtime peri-
ods Dt∆  between the irradiation cycles, )(BOCt λ  is given by eq. (64), 

fin)1(D)1(EOC
)(BOC
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1

,
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=λ

⎪⎩

⎪
⎨
⎧

∆+
=

−λ−λ
λ , (64) 

where )1(Dt −λ∆  is the downtime period after cycle no. 1−λ  for 1>λ . 

The irradiation history specified for a fuel sample is, by definition, related to the time periods 
( ))(BOC)(EOC tt λλ −  and )(Dt λ∆ , but the lengths of these time periods are fixed independently from 

the fuel sample’s irradiation history. So, therefore, the only chance to determine the calculated 
isotopic concentrations T

N1 )c,,c(
isot

K=c  as a function of burnup, )B(cc = , for a specified 

burnup range by means of the depletion code of interest is to vary the specific power )t(PS  such 
that the burnup varies over the full burnup range specified. A change of the specific power does 
not only result in a change of the fission rate but impacts also other depletion parameters such as, 
in particular, the fuel temperature and hence the moderator density (PWR) or void history 
(BWR). It is therefore recommended to study the amount of such impacts and to take, if required, 
account of these impacts by changing the depletion parameters concerned. 

So, it turns out that the determination of the calculated isotopic concentration as a function of 
burnup makes it necessary to vary the irradiation history of the fuel sample of interest. This obvi-
ously brings in some arbitrariness since the number of variations of the specific power )t(PS  
leading to one and the same change of the burnup is infinite. Since there is no other chance to 
consider the uncertainty of the fuel sample’s burnup, this arbitrariness reflects a fundamental 
uncertainty which is characteristic of the validation of depletion calculations. The impact of this 
uncertainty on the calculated isotopic concentrations can be analyzed in sensitivity studies using 
different variations of )t(PS  which all results in one and the same burnup change. It is obvious 
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that the outcomes of such studies depend on the height of the fuel sample’s burnup and the width 
of the burnup range over which the burnup is to be varied. 

Since the variation of the irradiation history is due to the necessity of varying the burnup over a 
specified range and is not due to any uncertainty in the recorded irradiation history is seems to be 
reasonable to vary the specific power stepwise by multiplying all the recorded specific power 
values )t(PS  of all the irradiation periods ( ))(BOC)(EOC tt λλ − , finL,,1K=λ , by one and the same 
factor µf  (less or greater than 1, as the case may be) and repeat for each of these variations, 
i.e. for each of the factors µf  applied, n,,1K=µ , the depletion calculation and the following of 
the radioactive decay. Thus, sets if isotopic concentration )B( µµ = cc  are obtained referring to 
different burnup values µB , n,,1K=µ , obtained according to the factors µf  applied to the spe-
cific power )t(PS . For a sufficiently large number n of sets )B( µµ = cc  the isotopic concentra-
tions Ic , isotN,,1I K= , can be determined as functions of the burnup by applying adequate inter-
polation procedures (e.g., spline interpolation) or fitting procedures (e.g., linear least squares 
using a polynomial model) to the sets )B( µµ = cc , n,,1K=µ . Thus the functional relation 

T
N1 ))B(c,),B(c()B(

isot
K== cc  sought after is obtained. 

This procedure has to be applied to all the analyzed fuel samples FSN,,1J K= , so that one gets 
the calculated isotopic concentrations 

( )TJ,)J(MIJJ1JJ isot
c,,c,,c)B( KK== cc , with { }))J(L(NMaxM isot)J(N,,1)J(Lisot

LABK=
= . (65). 

The question naturally arises if uncertainties in the fuel sample’s irradiation history have still to 
be included in the procedure just described. It goes without saying that in cases of doubt this 
question can only be answered by means of sensitivity studies. However, apart from the question 
if the uncertainties in the fuel sample’s irradiation history are really known, it seems to be quite 
unlikely to be confronted with doubtful cases, because it seems to be reasonable to assume that 
the impacts on the calculated isotopic concentrations due to uncertainties in the fuel sample’s 
irradiation history are covered by far by the impacts arising from the variation of the irradiation 
history due to the variation of the fuel sample’s burnup. This can be concluded from a simple 
example: Experience shows that the square root of the sample variance 2

JLs  of burnup values 

JLBν  estimated by some laboratory L from the results JLEν  for some burnup indicators 
)L(,,1 β=ν K , usually amounts to about 1 MWd / kg. Assuming a normal pdf model 

)s,B̂(N 2
JLJL  using the sample mean eq. (55) as the expectation and the sample variance 2

JLs  as the 

variance, the interval ]s3B̂,s3B̂[ JLJLJLJL +−  contains 99.7% of the cumulative distribution of 

)s,B̂(N 2
JLJL : 

∫
+

−

=
JLJL

JLJL

s3B̂

s3B̂

2
JLJL 997.0)s,B̂(NdB .  
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Let us assume a constant specific power SP  of 30 kW / kg for all the irradiation periods and a 
total time of 1500 effective full power days (resulting from 3 irradiation cycles with 500 effective 
full power days each). So, the burnup of the fuel at the end of its operation time amounts to 
45 MWd / kg U. A variation of the burnup by Ukg/MWd3s3 JL ±=± , i.e. on the interval 
[ ]kg/MWd48,kg/MWd42  results in a variation of the specific power by  

kg
kW2

d1500
kg/MWd3PS ±=

±
=∆± .  

Due to the normal pdf model )s,B̂(N 2
JLJL  used for the burnup, the specific power is thus assumed 

to be normal distributed with kg/kW30PS =  as expectation value and 2
S

2 )3/P(∆=σ  
222 )kg/kW(444.0)kg/kW()667.0( ==  as variance. The standard deviation kg/kW667.0=σ  

covers the uncertainty of the values )t(PS  of the specific power history recorded together with 
the values of the other irradiation history parameters (such as fuel and moderator temperature 
etc). 

Now, having described the procedures for evaluating the measured isotopic concentrations and 
the burnup values of the fuel samples as well as the procedures for determining the calculated 
isotopic concentrations as functions of burnup, we are prepared to the estimate the Isotopic Cor-
rection Factors (ICFs) as set forth in the next section 

4.1.4 Monte Carlo sampling on isotopic correction factors (ICFs) 

The upper part of Figure 7 summarizes what has been hitherto described: 

• JLE  represents the set of measured isotopic concentrations observed for the J-th fuel sample in 
the L(J)-th laboratory (cf. eq. (41)), and JLS  is the empirical covariance matrix of the compo-
nents IJLE  of JLE  (cf. eq. (46) or eq. (47)), ))J(L(N,,1I isotK= . 

• Assuming a normal distribution model ),(N JLJL SE  using JLE  as expectation and JLS  as 

covariance matrix, Monte Carlo (MC) samples MC
JLE  on the random vector JE  are drawn. 

• The values of the components MC
JLνE  of MC

JLE  related to the burnup indicators )L(,,1 β=ν K  are 
inserted into the respective well-known functional relations of the burnup to the burnup indi-
cator isotopic concentrations νc  (case (a), cf. equations (48) and (50)). Thus, a MC sample 

MC
JLB  on the random variable JB  is obtained, either from eq. (51) in case of 1)L( =β , or from 

eq. (54) in case of 1)L( >β  using a Bayesian MC procedure for evaluating the MC
JLBν  values 

obtained for the individual burnup indicators )L(,,1 β=ν K  according to eq. (50). 

• If the burnup value of the fuel sample is not based on any measurement, but calculated only 
(case (b)), a MC sample MC

JB  on the random variable JB  is drawn by evaluating all the vali-
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dation results compiled for the applied burnup calculation procedure (cf. eq. (59) or eq. (60) 
and Figure 6). 

 
Figure 7: Flow chart of the procedure of generating an ICF working pool 
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• If only part of the laboratories )J(N,,1L labK=  performed measurements on burnup indicator 

isotopic concentrations (case (c)), a MC sample MC
JB  is drawn according to the case (b) proce-

dure for all those laboratories which did not accomplish a burnup indicator isotopic concen-
tration measurement. For all the other laboratories laboratory specific MC samples MC

JLB  are 
drawn according to the case (a) procedure. Under certain conditions described in section 
4.1.2.3 the MC sample MC

JB  drawn according to the case (b) procedure can be added to equa-
tions (52) and (53) of the case (a) procedure (cf. equations (61) and (62)). 

In any case a burnup MC sample value is available. As indicated in Figure 7, this value is now 
inserted into the relations eq. (45), )B(JJ cc = , of the isotopic concentrations Jc , calculated for 
the J-th fuel sample, to the burnup. Thus a MC sample 

( )TL,J,)J(MJL1
MC
JL isot

c,,c K=c , (66) 

is obtained. With this MC sample and with the MC sample MC
JLE  derived by means of the empiri-

cal distribution ),(N JLJL SE  a MC sample of the ICFs is obtained for the fuel sample J analyzed 
in the laboratory L: 
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with ))J(L(NI isotmax ≡ . 

As indicated in Figure 7, the whole procedure described, starting with the drawing of the MC 
sample MC

JLE , is now repeated a good lot of times to get a sufficiently large number of MC sam-
ples MC

JL
MC
JL fICF ≡ . 

After N loops the result n_MC
JLf , N,,1n K= , form a matrix 
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JL

MC
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f

f
F M  (68) 

containing MC samples { }N,,1n,f MC_n
IJL K=  of size N for each of the isotopes isotN,,1I K= . 

So, this matrix contains all that information about the ICFs and the uncertainty of the ICFs which 
results from the measurement outcomes obtained for the J-th fuel sample in the L(J)-th labora-
tory. As appears from Figure 1, both the information about the ICFs and the information about 
the uncertainty of the ICFs are contributions to the flow of information following the hierarchy of 
uncertainties. To make the information contained in the matrix eq. (68) available for the Bayesian 
MC hierarchical procedure to be used, as explained in section 3, for translating the uncertainties 
of the ICFs into uncertainties of the bias-corrected isotopic number densities of a burnup credit 
application case, the sample mean vector 
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( )TIJLJL1JL ,ˆ,,ˆˆ KK ϕϕ=φ  (69) 

with the components 
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and the related sample covariance matrix 
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are derived from the MC sample values contained in the matrix eq. (68). 

Because of 

( ) ( )∑
=

−=ϕ−ϕ≡ϕ∆
N

1n

MC_n
IJL

MC_n
IJLIJL

MC_n
IJL

MC_n
IJL fln

N
1flnˆ , ))J(L(N,,1I IsotK= , (74) 

the elements of the sample covariance matrix eq. (72) do not depend on the quantities Ia  intro-
duced by equations (70) and (73); and the sample covariance matrix can be therefore written as 

( )∑
=−

=
N

1n

TMC_n
JL

MC_n
JL

ICF
JL 1N

1 ∆φ∆φS  (75) 

with vector MC_n
JL∆φ  the elements of which are given by eq. (74). 

The quantities (fixed numbers) Ia , IsotN,,1I K= , are introduced to represent the experience 
already available for the applied depletion calculation procedure with respect to the ICFs. Experi-
ence shows that for a good lot of isotopes observed ICF values are distributed around 1, so that 

1a I =  is an adequate choice to represent the experience already available for these isotopes. Only 
for a few isotopes ICFs have been observed for some depletion procedures which significantly 
differ from 1 (Gd-155 is a prominent example for that). In such cases it is recommendable to 
choose Ia  according to the available experience. 

As explained in section 3, a probability distribution model ( )Θf |p JL  is needed for evaluating the 
empirical data eq. (68) according to Bayes’ theorem eq. (29). The ratios 
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I

IJL
IJL a

f
R = ,   ))J(L(N,,1I IsotK=  (76) 

represent the values of the observed variables IJLf  as random proportions of numbers resulting 
from previous observations. It is therefore appropriate to choose a multivariate log-Normal distri-
bution for the distribution model ( )ΘR |p JL  of the random vector 
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JL1
JL ,
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f
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= KKR , (77) 

cf. References [12] and [13]. For this reason the logarithmical values ( )n_MC
IJLfln  of the data con-

tained in the matrix eq. (68) are used in equations (69) through (75). 

The definition region of the log-Normal distributed variables IJLR  is ( )∞∈ ,0R IJL , 
))J(L(N,,1I IsotK= . In fact, it is evident that an ICF number must be greater than zero, but a 

minimum possible value cannot be specified; and, likewise, it is obvious that an ICF cannot 
become infinite, but a maximum possible value cannot be specified. So, the choice of a log-Nor-
mal distribution model ( )ΘR |p JL  is also appropriate with respect to the definition region of the 
random vector JLf  determining the definition region of the random vector JLR , eq. (77). 

Now, as indicated in Figure 7, all the procedures hitherto described are repeated till the measure-
ment results from all the laboratories )J(N,,1)J(L labK=  for each of the fuel samples 

FSN,,1J K=  are evaluated. Thus one gets a set of sample mean vectors eq. (69) and related 
covariance matrices eq. (75): 

{ }FSlab
ICF
JLJL N,,1J),J(N,,1)J(L;,ˆ KK ==Sφ  (78) 

This set serves as a pool for generating ICFs for burnup credit (BUC) application cases. 

4.2 Evaluation of the isotopic correction factors for burnup credit applications 

It is well-known that the sets of isotopes considered in radiochemical analyses differ from the set 
of isotopes which can principally be used in BUC applications [14]. The sets of isotopes studied 
in radiochemical analyses usually include a good lot of isotopes which cannot be used in BUC 
applications, but which deliver necessary information about the fuel samples analyzed (as for 
instance obtained from burnup indicators as Cs-137, Ce-144) or information needed for different 
applications (e.g., source term validation for shielding calculations). So, the set of BUC isotopes 
considered in a radiochemical analysis is usually only a subset of the total set of isotopes studied 
in this analysis. It is observed that this subset often differs from analysis to analysis and some-
times also from laboratory to laboratory; and it is therefore found that many sets of analyzed iso-
topes do not contain all the isotopes which can principally be used in BUC criticality safety 
analysis. 
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Figure 8: Flow chart of the procedure for evaluating the ICFs for BUC applications  

(Figure continued on next page) 
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Figure 8 (continuation) 
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Figure 9: Example for missing data [15] 

Which isotopes are really used in an actual BUC application case depends on the BUC level 
applied to this case (e.g., “actinide-only” level or “actinide plus fission product” level with differ-
ent numbers of BUC fission products, cf. Ref. [14]). So, for an actual BUC application case first, 
as indicated in Figure 8, a “BUC-application-case-specific working pool” 

{ }FSlab
BUC
JL

BUC
JL N,,1J),J(N,,1)J(L;,ˆ KK ==Sφ  (79) 

has to be extracted from the pool eq. (78), i.e. a working pool which includes all the information 
contained in eq. (78) about the ICFs of the isotopes used in the actual BUC application case. 

Then, a BUC ICF data matrix Φ  has to be derived from the working pool eq. (79) in such a way 
that Φ  is capable to play a role of the matrix eq. (28) so that MC samples on the ICFs of the 
actually used BUC isotopes can be drawn according to eq. (32). 

The number of columns of the matrix Φ  is given by the number of BUC isotopes actually used, 
and the number of rows of Φ  is given by the sum  

∑
=

=λ
FSN

1J
lab )J(N . (80) 

Since it is observed, as stated above, that many sets of isotopes studied in radiochemical analyses 
do not contain all the isotopes principally applicable in BUC criticality safety analysis, it may 
happen that some of the actually used BUC isotopes do not appear in some of the data BUC

JLφ̂  and 
BUC
JLS  of the working pool eq. (79). It may therefore happen that some elements of the matrix Φ  

are missing, i.e. remain unknown, as exemplified in Figure 9. So therefore, the procedure of 
drawing MC samples on the ICFs of the actually used BUC isotopes according to eq. (32) must 
include a solution of the case that the matrix Φ  is incomplete. cf. References [13] and [15]. Then 
and only then, when a solution of this case is included, it is possible to use all the information 
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contained in the working pool eq. (79) about the ICFs of the isotopes used, even if some of these 
isotopes do not appear in some of the data sets BUC

JLφ̂  and BUC
JLS , [16], [17]. 

4.2.1 Generation of working pools for BUC applications 

The extraction of a BUC-application-case-specific working pool eq. (79) from the pool eq. (78) is 
carried out by projecting each random vector JLφ  related to JLφ̂  and ICF

JLS  into the lower space 

spanned by the random vector BUC
JLφ . 

The random vectors JLφ  are defined by 

T

I

IJL

1

JL1
JLJL ,

a
f

ln,,
a

f
lnln ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=≡ KKRφ , )J(N,,1)J(LL labK== , FSN,,1J K= , (81) 

cf. equations (69), (70), (76) and (77). Since JLR  obeys, by definition (cf. Section 4.1.4), a multi-

variate log-Normal distribution model, JLφ  follows a multivariate normal distribution [12]. BUC
JLφ̂  

in eq. (79) is thus obtained by deleting all the elements of JLφ̂ , eq. (69), which do not belong to 

the BUC isotopes to be used; and the covariance matrix BUC
JLS  is obtained by retaining only those 

rows and columns of ICF
JLS  which belong to these BUC isotopes [1]. So, according to equations 

(69) through (73) one gets for BUC
JLφ̂  and BUC

JLS : 

( )∑
=

=
N
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JL N

1ˆ φφ , (82) 
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where ))J(L(NN BUCBUC =  is the number of BUC isotopes contained in the set of isotopes stud-
ied by the )J(L -th laboratory in the analysis of the J-th fuel sample; 

( )( ) ( )( )∑
=

−−
−

=
N

1n

T
BUC
JL

MC_nBUC
JL

BUC
JL

MC_nBUC
JL

BUC
JL ˆˆ

1N
1 φφφφS .    (84) 

It should be kept in mind that the working pool eq. (79) thus obtained depends on the isotopes 
really used in the BUC application case of interest. Accordingly, different BUC application cases 
usually result in different working pools eq. (79), whereas the pool eq. (78) does not depend on 
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any application case, but is the basis for all BUC-application-specific working pools eq. (79) that 
may be of interest. 

4.2.2 Evaluation of a working pool of a BUC application 

As stated in the preceding section, the random vector JLφ , eq. (81), follows a multivariate Nor-
mal distribution. Any projection into a lower space gives a marginal distribution which is again 
Normal [1]. So therefore, the random vector BUC

JLφ  follows, by construction, a Normal distribu-

tion with unknown expectation ][ BUC
JLφE  and unknown covariance matrix BUC

JLΣ , 

( ) ( )

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −−−⋅∝

=

−−
][][

2
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],[N],[p
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JL
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JL

1BUC
JL

TBUC
JL
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JL
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JL

BUC
JL

BUC
JL
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JL

BUC
JL

BUC
JL

φEφΣφEφΣ

ΣφEΣφEφ
 (85) 

The N vectors ( )MC_nBUC
JLφ , N,,1n K= , eq. (83), each of which results, by construction, from an 

independent MC draw MC_n
JLf , represent thus a set of independent observations from the Normal 

distribution of BUC
JLφ . Therefore, assuming that all prior knowledge has been used to fix the num-

bers Ia  in eq. (70) and hence eq. (83) so that no other prior knowledge is available, it follows, as 
appears from the Appendix to this paper, that 

• the covariance matrix BUC
JLΣ  follows an Inverse-Wishart distribution 

 
( ){ }

[ ]( )))J(L(N;1N;)1N(tWisharnvI
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−S

φΣ K
 (86) 

 with (N-1) degrees of freedom and BUCBUC NN ×  scale matrix BUC
JL)1N( S− , BUC

JLS  given by 
eq. (84), and that 

• the expectation vector ][ BUC
JLφE  follows a Normal distribution 
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⎠

⎞
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⎝

⎛
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⎝
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,ˆNN,,1n,][p
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JLBUC

JL
MC_nBUC

JL
BUC
JL

ΣφφφE K  (87) 

 with expectation vector BUC
JLφ̂  given by eq. (83), and covariance matrix NBUC

JLΣ . 

So therefore, the following steps can be taken successively 

• Drawing of a MC sample MC
JLΣ  from the Inverse-Wishart pdf eq. (86) 
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• Insertion of MC
JLΣ  into the normal pdf eq. (87) and then drawing of a MC sample MCBUC

JL ][φE  

from the resulting pdf ( )N/;ˆN MC
JL

BUC
JL Σφ  

• Insertion of MCBUC
JL ][φE  and MC

JLΣ  into the Normal pdf eq. (85) and then drawing of a MC 

sample MC
JLφ  from the resulting pdf ( )MC

JL
MCBUC

JL ;][N ΣφE . 

As indicated in Figure 8, the MC sample MC
JLφ  provides the line number 

[ ]∑ ∑
= = ⎭

⎬
⎫

⎩
⎨
⎧

+−=λ
J

1j

)J(L

1
JL )1j(

l

l  (88) 

of the BUC ICF data matrix nΦ . 

To get the next line of this matrix, one has to perform the MC sample procedure just described 
for the next )J(L  value. And, as indicated in Figure 8, on has to proceed in this way till one is 
through with all )J(N,,1)J(L labK=  and FSN,,1J K= . The matrix nΦ  thus obtained represents 
an ICF Monte Carlo sample from all the available data. As already stated, this matrix may be 
incomplete. 

By construction, the line vectors 

( )
BUCIn1nn ,, lll K ϕϕ=φ , λ= ,,1Kl , (89) 

of the matrix nΦ  are mutually independent. BUCI  in expression (89) denotes the number of BUC 
isotopes used in the BUC application case of interest; and λ  is the total number of lines of nΦ , 
cf. eq. (80).  

In addition, even though some components in lϕ  of some line vectors lnφ  may be missing, each 

line vector is, by construction, a sample lnφ  from a related Normal distribution 

( ) ( ) ( ) ( )

,,,1

,][][
2
1exp],[N],[p 1T2/1

λ=
⎭
⎬
⎫

⎩
⎨
⎧ −−−⋅∝= −−

Kl

lllllllllll φEφΣφEφΣΣφEΣφEφ
 (90), 

with expectation ][ lφE  and covariance matrix lΣ . 

As explained in section 4.1.1, the results JLE , eq. (41), obtained by the different laboratories 

)J(N,,1)J(L labK=  for one and the same fuel sample J are expected to be compatible, i.e., have 

one and the same expectation ][ JLEE , cf. Ref. [1]. Consequently, those line vectors lnφ , which 
are related to one and the same fuel sample J, shall have one and the same expectation, i.e., shall 
be compatible. 
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In addition, to the knowledge of the authors of this paper, it has never been observed up to now 
that ICFs show a significant dependence on the burnup of the fuel samples analyzed. This means 
that a compatibility test of the ICFs obtained for the different burnup values leads to the result 
that the hypotheses that these ICFs have one and the same expectation cannot be rejected on the 
basis of the available ICF data and the significance level α  chosen for the test [1]. Since such a 
compatibility test is, by definition, a goodness-of-fit test (cf. Ref. [1], section 11.5.2), a signifi-
cance level of %1.0=α  is usually chosen. In other words, with a statistical certainty of 

%9.99)1( =α−  it cannot be rejected that ICFs obtained for different burnups are compatible.1 
Consequently, it cannot be rejected on the basis of %1.0=α  that all the line vectors lnφ , 
eq. (89), λ= ,,1Kl , are compatible. 

As explained, compatibility of all the line vectors lnφ , λ= ,,1Kl , means that all these vectors 

have one and the same expectation ][][][ n φEφEφE == ll  for all λ= ,,1Kl ; but observation of 
compatibility of line vectors does not imply, in general, any statement about the covariances 

( ) [ ] llll ΣφEφφEφEφ =−−= T
nnn ])[(])[(cov , λ= ,,1Kl , (91) 

of the line vectors apart from the fact that ][ nlφE  is replaced with ][φE  in expression (91). 

However, as told in section 4.1.1, compatibility of the results JLE , eq. (41), obtained by different 

laboratories )J(N,,1)J(L labK=  for one and the same fuel sample J, is missed very often. Usu-
ally no explanation of the observed incompatibilities can be given. Since results can safely be 
discarded only on physical arguments, the observed incompatibilities can only be understood as 
an indication of underestimation of the uncertainties of at least some of the individual sets of 
results JLE , eq. (41). For rectifying this underestimation one and the same probability distribu-

tion model is assumed, as already explained in section 4.1.1, for all the results JLE , 

)J(N,,1)J(L labK= , obtained for one and the same fuel sample J. Consequently, for all the line 

vectors lnφ  which result from one and the same fuel sample the same covariance matrix JΣ  is 

taken in eq. (90), i.e., JΣΣ =l . 

The question naturally arises as for what JΣ  stands. For all the line vectors lnφ  which result 

from a given fuel sample J the covariance matrix JΣ  is related to the precision that can be 
expected for each of these line vectors under the condition that it is considered that these line 
vectors must be compatible. 

The degree of precision is expressed by the information content eq. (30), cf. Ref. [1]. If JΣΣ =l  

were known, eq. (30) would deliver for a line vector lnφ  due to eq. (90) 

                                                 
1  In section 9 we will outline what can be done when it might have been observed one day that some ICFs show a 

significant dependence on the burnup. 
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Even though it might be that certain fuel samples require certain radiochemical analysis methods, 
precision is not determined by the analyzed fuel samples FSN,,1J K=  but by the analysis meth-
ods used by the laboratories. Therefore, even if we are dealing with a set of fuel samples each of 
which was only analyzed once, i.e., even if we are dealing with the case 1)J(Nlab =  for all 

FSN,,1J K= , it is necessary to use one and the same covariance matrix Σ  for all the analyzed 

fuel samples, i.e., ΣΣ =J , since experience shows that if each and every of these fuel samples 
were given to all the available laboratories incompatibility of the results would be observed for 
these samples, at least in many cases, even then if the laboratories apply the same or very similar 
analysis methods. 

So, it turns out that the line vectors lnφ , λ= ,,1Kl , eq. (89), of the matrix nΦ , which are, by 
construction, mutually independent, have to be taken as a random sample of size λ  from a Nor-
mal distribution 

( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −−−⋅∝= −− ][][

2
1exp],[N],[|p 1T2/1 φEφΣφEφΣΣφEΣφEφ  (93) 

with unknown expectation ][φE  and unknown covariance matrix Σ . 

Therefore, if all line vectors lnφ  and hence the matrix nΦ  were complete, all the elements inlϕ  
( λ== ,,1;I,,1i BUC KlK ) would be completely defined by the probability density function (pdf) 
( ) ( )ΣφEΦΘΦ ],[|p|p nn =  which is named as “complete-data pdf” in the following. 

However, as already stated, the matrix nΦ  may be incomplete, i.e., some elements inlϕ  may be 
missing. This is the case, in particular, if the “actinide-plus-fission-product” BUC level is applied 
[14]. An incomplete matrix can be split into two parts, one part denoted by obs,nΦ  contains the 
observed (i.e., the non-missing) data, the other part denoted by miss,nΦ  characterizes the missing 
data. So, the complete-data pdf ( )ΘΦ |p n  is the joint pdf ( )ΘΦΦ |,p miss,nobs,n  of obs,nΦ  and 

miss,nΦ , which can be rewritten as product of the conditional pdf ( )ΘΦΦ ,|p obs,nmiss,n  and the 
marginal pdf ( )ΘΦ |p obs,n , cf. Ref. [1], 

( ) ( ) ( ) ( )ΘΦΘΦΦΘΦΦΘΦ |p,|p|,p|p obs,nobs,nmiss,nmiss,nobs,nn == . (94) 

The marginal pdf is the projection  

( ) ( ) miss,nnobs,n d|p|p ΦΘΦΘΦ ∫= . (95) 

of the complete-data pdf; and the conditional pdf ( )ΘΦΦ ,|p obs,nmiss,n  is the section 
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( ) ( )
( )∫

=
miss,nmiss,nobs,n

miss,nobs,n
obs,nmiss,n d|,p

|,p
,|p

ΦΘΦΦ

ΘΦΦ
ΘΦΦ  (96) 

through the complete-data pdf at given data obs,nΦ . Using eq. (95) in eq. (96) one gets eq. (94). 

The conditional pdf ( )ΘΦΦ ,|p obs,nmiss,n  is, by definition, a predictive distribution of the missing 
data miss,nΦ  under the condition of the observed data obs,nΦ  and given model parameters 

( )ΣφEΘ ],[= . The problem is that the parameters Θ  are unknown. However, given a guess )0(Θ  

on Θ , one can obtain by means of Monte Carlo techniques a first guess )1(
mis,nΦ  on the missing 

data miss,nΦ . With this guess one has a guess ( )ΘΦΦ |,p )1(
miss,nobs,n  on the complete-data pdf. 

Using this guess as likelihood in Bayes’ theorem eq. (29), a guess ( ))1(
miss,nobs,n ,|p ΦΦΘ  on the 

“complete-data posterior pdf” ( )n|p ΦΘ  can be obtained. From this guess of ( )n|p ΦΘ  a new 
guess )1(Θ  on Θ  can be drawn by means of MC techniques, and the whole procedure just 
described is repeated with )1(Θ  as new starting parameter so that one gets first a new guess 

)2(
mis,nΦ  on the missing data, and then a new guess )2(Θ  on the parameter set Θ . The procedure is 

then repeated again and again, till convergence is achieved, cf. References [16] through [18]. The 
whole procedure is known as “data augmentation procedure”. The first step, consisting in appli-
cation of a guess )j(Θ  for achieving a new guess )1j(

mis,n
+Φ  is named as “imputation step”, the 

second step consisting in applying )1j(
mis,n
+Φ  for obtaining a complete-data posterior pdf and then a 

new guess )1j( +Θ  is called “posterior step” [16]: 

• Imputation step: 

 ),(ppdfdatacomplete),|(p obs,n
)1j(

miss,n
)1j(

miss,n)j(obs,nmiss,n)j( ΘΦΦΦΘΦΦΘ ++ →→→  (97) 

• Posterior step: 

 )1j(
)1j(

miss,nobs,n
theoremBayes'

obs,n
)1j(

miss,n ),|(ppdfposteriordatacomplete),(p +
++ →⎯⎯⎯⎯ →⎯ ΘΦΦΘΘΦΦ  (98) 

The starting parameter set )0(Θ  can be generated by using the so-called “Expectation-Maximiza-

tion (EM) algorithm” [16], [18]. The data augmentation procedure is performed by means of 
Markov chain MC techniques [18]. When convergence is achieved after Cj  iteration steps then 

all the MC draws )j(Θ  with Cjj >  can be used to draw respective MC samples MCφ  on φ  from 

the pdf eq. (93) according to eq. (32). 

Since the line vectors lnφ  of the matrix nΦ  are independent samples from the Normal distribu-
tion eq. (93), it follows, as appears from the Appendix to this paper, that the complete data poste-
rior pdf ( ) ( )nn |],[p|p ΦΣφEΦΘ =  is given, assuming that no prior knowledge about 

( )ΣφEΘ ],[=  is available, by the product 
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( ) ( ) ( )nnn ,|][p|p|p ΦΣφEΦΣΦΘ ⋅= , (99) 

where 

• ( )n|p ΦΣ , denoting the pdf of the covariance matrix Σ  under the complete data matrix nΦ , 
is given by the Inverse-Wishart distribution 

 ( ) ( )BUC
1

n
1

n I;1;)1(WishartInv|p −λ−λ−∝ −− SΦΣ , (100) 

with )1( −λ  degrees of freedom and BUCBUC II ×  scale matrix n)1( S−λ  following from the 
sample covariance matrix 

 ( ) ( )∑
λ

=

−−
−λ

=
1

T
nnnnn ˆˆ

1
1

l
ll φφφφS , (101) 

with the sample average 
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having the components 

 ∑
λ

=λ
=

1
inni

1ˆ
l

lφφ , BUCI,,1i K= , (103) 

and 

• ( )n,|][p ΦΣφE , denoting the pdf of the expectation ][φE  under the complete data matrix nΦ  
and the given covariance matrix Σ , is given by the Normal distribution 

 ( ) ( )λ∝ /,ˆN,|][p nn ΣφΦΣφE , (104) 

with expectation nφ̂  given by eq. (102) and covariance matrix λ/Σ . 

The posterior step eq. (98) of the data augmentation procedure becomes therefore: 

• Given a guess )j(
mis,nΦ  first a MC sample )j(

nΣ  is drawn from the Inverse-Wishart distribution 

eq. (100), using the scale matrix ( ) )j(
n1 S−λ  resulting from the sample covariance matrix 

( ))j(
nn

)j(
n ΦSS =  obtained with the augmented data matrix ( ))j(

miss,nobs,n
)j(

n ,ΦΦΦ =  according to 

eq. (101). 

• Then, using the MC sample )j(
nΣ  and the sample mean ( ))j(

n
)j(

n ˆˆ Φφφ =  obtained with the aug-
mented data matrix ( ))j(

miss,nobs,n
)j(

n ,ΦΦΦ =  according to eq. (102) a MC sample )j(
n][φE  is 

drawn from the Normal distribution eq. (104). 

The resulting parameter MC sample ( ))j(
n

)j(
n)j( ,][ ΣφEΘ =  can either be used to start the next 

imputation step eq. (97) or, if Cjj =  or greater, i.e., if convergence is achieved, to draw a MC 
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sample )j(
nφ  from the Normal distribution eq. (93). For numerical details and requirements of per-

forming the data augmentation procedure see References [13] and [18]. 

When Cjj >  is reached and a MC sample )j(
nφ  is drawn, then a MC sample )j(

nf  of the ICFs is 
obtained by inverting the transformation introduced with eq. (70), i.e. 

( ) ( )( )T
I

)j(
n1

)j(
n

)j(
n

)j(
n BUC

f,,f K=≡ fICF  (105) 

with 

( ) ( ){ }i
)j(

ni1
)j(

n expaf ϕ= , BUCN,,1i K= , (106) 

( )i
)j(

nϕ  the i-th component of )j(
nφ . 

It is obvious that in case of a complete-data matrix nΦ  a MC ICF sample set )0(
nf  ( 0j = ), 

eq. (105), is directly obtained by drawing )0(
nΣ  from the pdf eq. (100), then )0(

n][φE  from the pdf 
eq. (104), then )0(

nφ  from the pdf eq. (93), and then using the re-transformation eq. (106). 

The MC ICF sample set )j(
nf  ( 0j =  or Cjj > , depending on the data matrix nΦ ) is applied, 

according to eq. (21), to the isotopic number densities calculated for the BUC application case of 
interest. As indicated in Figures 1 and 8, with the set of bias-corrected isotopic number densities 

)j(
n,iN , BUCI,,1i K= , thus obtained a criticality calculation according to section 7 is performed. 

The resulting neutron multiplication factor ( )neffk  is one term of the sum eq. (7), 

( ) ( )nBneffn kk ∆+=κ . (107) 

Now, to get a sufficiently large number n of samples ( )neffk  such that the uncertainty in the bias-
corrected isotopic number densities, which results from the uncertainties in the depletion valida-
tion procedure, is sufficiently considered by the resulting distribution of the sample values 
( )neffk  one returns, as indicated in Figure 8, to the first step of the evaluation of the BUC appli-
cation case working pool eq. (79), i.e., one goes back to the drawing of MC samples from the 
distributions eq. (86), eq. (87) and then eq. (85) to get the next data matrix nΦ . 

5 Uncertainties in the depletion calculations performed for a burnup credit application 
case 

As indicated in Figure 1, in addition to uncertainties due to manufacturing tolerances in the fuel 
and core design parameters, uncertainties in the nuclear data ξ  result in uncertainties in the iso-
topic number densities )s(

iN , BUCI,,1i K= , calculated for BUC application to a spent fuel system 

S of interest. Therefore, the bias correction of the number densities )s(
iN  according to eq. (21) 

have to consider not only the uncertainties in the ICFs according to section 4.2.2 but also, in prin-
ciple, the uncertainties in the number densities )s(

iN . 
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However, as stated in Ref. [19], section 5, the wide variety of fuel irradiation histories to be con-
sidered in a BUC application case makes it necessary to look for a bounding history given by 
those fuel operating conditions which result in the highest spent fuel reactivity in the spent fuel 
system S of interest. But, as stated in Ref. [20], it is observed that instead of searching for a 
bounding irradiation history very often a considerably conservative irradiation history is simply 
chosen (for the difference between the terms “bounding” and “conservative” see Ref. [4]). The 
choice of such conservative irradiation histories result in number densities )s(

iN , BUCI,,1i K= , 
the use of which in criticality calculations result in neutron multiplication factors which cover by 
far all reactivity impacts due to the manufacturing tolerances in the fuel and core design parame-
ters and due to the uncertainties in the nuclear data ξ . 

In BUC application cases it makes sense in fact to define the operating conditions, i.e., the deple-
tion parameters, in such a way that reactivity effects due to variations in fuel and core design 
parameters are covered. However, studies on the reactivity impacts due to the uncertainties in the 
nuclear data ξ  are of fundamental interest in BUC criticality safety analysis. In the framework of 
hierarchical Bayesian procedures here presented such a study can be performed by drawing MC 
samples ( )MC

)s(
iN  from a distribution ( )ΘN |p )s(  of the BUC-application-case-specific number 

densities ( )T)s(
I

)s(
1

)s(
BUC

,, NNN K= . This requires to draw MC samples on the nuclear data ξ  to 

represent the variation of these data due to their variances and covariances. We will discuss pro-
cedures required for drawing MC samples on ξ  in sections 8.1 and 8.2. 

Once MC samples ( )MC
)s(N  are available, the set of bias-corrected isotopic number densities 

)j(
iN , BUCI,,1i K= , to be used in a subsequent criticality calculation (cf. Figure 1) is generated 

by multiplying the values ( )MC_n
)s(N  of the n-th MC sample on )s(N  with the respective values 

( )i
)j(

nf  of the n-th MC sample on the ICFs. 

6 Validation of criticality calculation 

As already described in section 1.1 validation of a criticality calculation is achieved by estimating 
the bias Bk∆  which is characteristic of the applied criticality calculation procedure with respect 
to the application case S. In the framework of the hierarchical Bayesian MC procedures here 
described this means that to the n-th keff value ( )neffk obtained with the n-th set 

( ) ( ) ( )( )T
MC_n

)s(
IMC_n

)s(
1MC_n

)s(
BUC

N,,N K=N  of isotopic number densities the n-th sample ( )nBk∆  

drawn on the bias Bk∆  has to be added, cf. eq. (7) or eq. (107). 

The procedure to generate MC samples ( )nBk∆  on Bk∆  by means of Bayesian MC procedures 
has been already described in detail in Ref. [8]. The description is not repeated here, only the 
main steps are summarized: 
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• Since the experimental or experiment-based systems chosen as benchmarks (B) adequate to 
estimate the bias Bk∆ , which is characteristic of the applied criticality calculation code with 
respect to the application case S (cf. section 1.3), may have made use of the same equipments 
such as the same fuel rods and absorber plates (cf. Ref. [21]), the material design data of all 
the selected benchmarks are compiled in one material and design data vector Bx . This vector 
is, so to speak, the joint material and design data vector of all the chosen benchmarks, i.e., 
some components of Bx  can be related to different benchmarks, others are related to only one 
benchmark. 

• Due to the uncertainties in the material and design data Bx  (cf. Ref. [8]), MC samples MC
Bx  on 

the joint vector Bx  are drawn. 

• For each MC sample ( )jMC
Bx  the keff values of all the benchmarks are calculated. With these 

keff values a set of bias samples jBi )k(∆ , BN,,1i K= , N,,1j K= , is obtained; BN  is the num-
ber of chosen benchmarks, N  denotes the number of MC samples drawn on Bx . 

• After having reached a sufficiently large number N , the bias samples are averaged thus yield-
ing the sample mean vector 

 ( )TNB1BB B∆k,,∆k K=∆k  (108) 

 with 

 ∑
=

∆=
N

1j
jBiBi )k(

N
1∆k , BN,,1i K= , (109) 

 and the sample covariance matrix 

 ( ) ( )∑
=

−−
−

=
N

1j

T
BjBBjBB )()(

1N
1 ∆k∆k∆k∆kS , (110) 

with 

 ( )T
jNBj1BjB )∆k(,,)∆k()(

B
K=∆k , N,,1j K= . (111) 

• Since the keff values from which the bias samples jBi )∆k(  are derived are usually obtained by 
means of a MC criticality calculation code, the vectors eq. (111), N,,1j K= , can be taken, 
due to the Central Limit Theorem of statistics [1], as samples on a normal distribution with 
expectation ][ B∆kE  and covariance matrix BΣ . So, as follows from the Appendix, eq. (A-41) 
and eq. (A-42), assuming that no prior information about ( )BBB ],[ Σ∆kEΘ =  is available, a 
MC sample MC

BΣ  can be drawn from the Inverse-Wishart distribution with scale matrix 

B)1N( S− , and a MC sample MC
B ][∆kE  can be drawn from a normal distribution, the expec-

tation and the covariance matrix of which are the sample mean eq. (109) and the matrix 
N/MC

BΣ , respectively. 
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• Defining explanatory variables iz , BN,,1i K=  and Sz  characterizing adequately the chosen 

benchmarks and the application case S, the MC sample ( )MC
B

MC
BB ,][ Σ∆kEΘ =  can be used 

to perform a Bayesian regression analysis (cf. [6], [8], [16]) which yields a MC sample 
)( S

MC
B

MC
B z∆k∆k =  for the bias to be applied to the application case S. This sample is one of 

the values nB )∆k(  to be inserted in eq. (107). Drawing of the next sample 
( )MC

B
MC

BB ,][ Σ∆kEΘ =  leads to the next MC sample )( S
MC
B z∆k , and so forth. In this way 

one gets the set of MC sample values nB )∆k(  needed for the samples nκ , eq. (107) 

The required explanatory variables iz , BN,,1i K= , and Sz  are usually case-dependent [15]. To 
avoid overfitting, the dimension of iz  and Sz  shall be reduced to the minimum dimension 
required for achieving an accepted regression model, i.e., a model which complies with the sam-
ples ( )MC

B
MC

BB ,][ Σ∆kEΘ = . The minimum required dimension of the explanatory variables can 
be checked by means of statistical tests [1]. It is often observed that the minimum required 
dimension amounts to one with 1i =z , i∀ , and 1S =z , which means that there is no need for 
any explanatory variable since the simplest regression model given by the weighted means pro-
cedure (cf. Ref. [8] and section 11.5.2 in Ref. [1]) fits to the samples BΘ . 

As already stated in section 1.3, consideration of the uncertainties in the nuclear data ξ  is not 
required for the estimation of the bias B∆k , i.e., for the validation of the criticality calculations. 
As indicated in Figure 1, these uncertainties have to be taken into account when the neutron mul-
tiplication factor keff of the application case is estimated. 

7 Uncertainties in the criticality calculations performed for an application case 

In addition to the uncertainty due to the uncertainties in the validation of the depletion calcu-
lation, the uncertainties in the material and design data Sx  of the application case S and the 
uncertainties in the involved nuclear data ξ  have to be taken into account in the evaluation of the 
neutron multiplication factor keff of the application case. In the framework of the hierarchical 
Bayesian MC procedures here described this means that in the input to the calculation (yielding 
the sample value neff )k(  in eq. (107) the isotopic number density MC sample )j(

n,iN , BUCI,,1i K=  

(cf. section 5) is used together with the MC sample n
MC
S )(x  on the material and design data Sx  

and the MC sample MC
nξ  on the involved nuclear data ξ . As already mentioned in section 1.1, the 

joint pdf ),(p S ξx  of Sx  and ξ  factorizes as 

)(p)(p),(p SS ξxξx ⋅= . (112) 

Therefore, the MC samples n
MC
S )(x  and MC

nξ  can be drawn independently from )(p Sx  and )(p ξ , 
respectively. 



49 

The procedure of generating MC samples n
MC
S )(x  has been already described in detail in 

Ref. [8]. The description is not repeated here. In the following the attention is focused on the 
drawing of MC samples MC

nξ . 

8 Evaluation of nuclear data uncertainties 

8.1 The ideal method 

The ideal method of evaluating uncertainties in the nuclear data ξ  is, in principle, completely 
analogous to the method of evaluating the uncertainties in the validation of depletion calcula-
tions. On the analogy to the matrix Φ , generated as described in section 4.2.2, one needs a neu-
tron-energy-dependent matrix )E( nM  ( =:En  neutron energy) which contains all the available 
observations )E( nlξ  of the involved nuclear data, empirical observations (e.g., measured data), 
empirically based observations (resulting from evaluations of integral measurements for 
instance), and data derived by means of theories of nuclear reactions and models of the nuclei 
(e.g., data related to the experimentally non-resolvable resonance region). Choosing an adequate 
distribution ( ))E(|)E(p nn Θξ  and a prior pdf ( ))E(p nΘ  representing adequately the prior knowl-
edge about the distribution parameters )E( nΘ  one gets by means of Bayes’ theorem eq. (29) the 
posterior pdf 

( ) ( ) ( ))E(p)E(|)E(p)E(|)E(p nnnnn ΘΘMMΘ ⋅∝ , (113) 

from which MC samples MC
n )E(Θ  can be drawn which can be used to draw, according to 

eq. (32), MC samples MC
n )E(ξ  from the distribution ( ))E(|)E(p nn Θξ . 

In case of missing data, i.e., in case that )E( nM  is incomplete, the data augmentation procedure 
described in section 4.2.2 (see equations (94) through (98)) can be used to estimate the posterior 
pdf ( ))E(|)E(p nn MΘ  provided that the missing-data-mechanism is ignorable, i.e., that the miss-
ingness does not depend on the missing data (for details see Ref. [16]). 

Once a MC sample MC
n )E(ξ  is obtained, a continuous cross-section library MC

XSL  can be gener-

ated from MC
n )E(ξ  by means of a basis-data evaluation code. This library is used in the calcula-

tion of one of the sample values ( )neffk  in eq. (107).  

The procedure is repeated by drawing the next sample MC
n )E(ξ , from which the next library 

MC
XSL  is generated which is used for the calculation of the value ( ) 1neffk + , and so forth. 

8.2 The one-data-set case 

Due to the lack of a sufficient amount of nuclear basis data it is hardly to believe that the ideal 
method described in the preceding section can ever be realized. So, one has to be content with the 
fact that at least one set of estimates )E(ˆ

nξ  of the mean of the nuclear basis data is available 
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together with the estimate )E(ˆ
nV  of the corresponding covariance matrix of the nuclear basis 

data. Since more information will scarcely be available one is committed to go the usual way, i.e., 
to assume that the expectations )]E(ˆ[ nξE  and )]E(ˆ[ nVE  are the expectation vector )]E([ nξE  
and the covariance matrix )E( nV  of the Normal distribution ( ))E(),E([N nn VξE . MC samples 

MC
n )E(ξ̂  are therefore drawn from a Normal distribution using the estimates )E(ˆ

nξ  and )E(ˆ
nV  

as expectation vector and covariance matrix, respectively. The resulting samples MC
n )E(ξ̂  are 

then used for generating the cross section libraries MC
XSL . 

8.3 Usage of the SCALE module TSUNAMI 

We are just installing the one-data-set procedure described in the preceding section. As long as 
the installation of that procedure has not been finished, we use the module TSUNAMI of the 
SCALE system [22] for estimating the contribution of the uncertainties of the nuclear data to the 
neutron multiplication factor keff. 

Application of TSUNAMI to the system S of interest (application case) provides the neutron 
multiplication factor Sk  of the system and, according to equations (19) and (20), the ratio 

( ) 2/1

,
ss

S

ND
ND

,cov
k

R
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Λ
ξξ

ξξ
Λ∝

σ
= ∑

µν
µ

µν

µν
ν  with ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ξ

ξ∂
∂

=Λ j
j

S

S
sj

k
k
1 . (114) 

This ratio is the relative deviation of the system’s neutron multiplication factor Sk  due to the 
uncertainties in the nuclear data (ND) ξ , cf. Ref. [22]. Since TSUNAMI uses MC techniques 
[22], the sample mean Sk  of the calculated neutron multiplication factor Sk  can be assumed to 
follow a Normal distribution because of the Central Limit Theorem of statistics [1]. It is assumed, 
therefore, that the estimate  

SNDND kRˆ ⋅=σ  (115) 

follows a normal distribution ( )][V],[EN NDND σσ  with expectation ][E NDσ  and variance 

][V ND
2 σ≡τ . So, running TSUNAMI m times for the application case S using different starting 

random numbers one gets a set of results ( ) jNDσ̂ , m,,1j K= , with sample mean 

( )∑
=

σ=σ
m

1j
jNDND ˆ

m
1  (116) 

and sample variance 

( )( )∑
=

σ−σ
−

=τ
m

1j

2
NDjND

2 ˆ
1m

1ˆ . (117) 
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Due to the normality assumption it follows 

• that ][E NDσ  follows a Normal distribution ( )m/,N 2
ND τσ  with expectation NDσ  and variance 

m/2τ , cf. eq. (39), and 

• that 2τ  follows an Inverse- 2χ  distribution ( )222 ˆ),1m(|Inv τ−τχ−  with 1m −  degrees of 
freedom and scale feactor 2τ̂ , cf. eq. (40). 

So the following steps have to be taken 

• Drawing of a MC sample 2
MCτ  from the distribution ( )222 ˆ),1m(|Inv τ−τχ−  

• Insertion of 2
MCτ  into ( )m/,N 2

ND τσ  and drawing of a MC sample MCND ][E σ  from the result-
ing distribution 

• Insertion of MCND ][E σ  and MCND
2
MC ][V σ≡τ  into the distribution ( )][V],[EN NDND σσ  and 

drawing of a MC sample MC
NDσ  from the resulting distribution 

• This MC sample MC
NDσ  is inserted into the distribution 

 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
∆

−
σπ

=σ=σ∆∆ 2
ND

2
ND

ND

2
ND

2
NDNDND

k
2
1exp

2
1,0N],k[E|kp  (118) 

 and a MC sample MC
NDk∆  on the deviation from the expectation [ ] 0kE ND =∆  is drawn. 

Expression (118) results from reflections on the meaning of the ratio eq. (114): It is obvious that 
SNDND kR ⋅=σ  is related to a distribution ( )2

NDND ,0|kp σ∆  of the variable ]k[Ekk SSND −=∆  
with expectation 0]k[E ND =∆  (by definition) and variance 

( )[ ] ( )[ ] .]k[EkE]k[EkE]k[V 2
ND

2
SS

2
NDNDND σ=∆−=∆−∆=∆   

In fact, as follows from eq. (114), 

( ) ( ) T

,

SS2
ND

2
S

2
ND covk,covkRk zξz=

ξ∂
∂

ξξ
ξ∂
∂

=⋅=σ ∑
µν µ

µν
ν
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⎟
⎠

⎞
⎜
⎜
⎝

⎛

ξ∂
∂

ξ∂
∂

= KK ,
k

,,
k

j

S

1

Sz . (119) 

Expression (119) is just the variance of )(kS ξ  in the first-order perturbation evaluation 

( ) ξzξξ d][Ek)(k SS +≈ . (120) 

with 

[ ] ( )][Ek)(kE SS ξξ ≈ . (121) 

So, assuming )(kS ξ  to be Normal distributed it follows that ]k[Ekk SSND −=∆  is Normal dis-

tributed with expectation [ ] 0kE ND =∆  and variance 2
NDσ . 
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Now, the n-th MC sample ( )nMC
NDk∆  obtained by means of the above described procedure, i.e, 

resulting from the successive draws of ( )n2
MCτ , n

MC
ND ][E σ  and ( )nMC

NDσ  is added to the right-hand 
side of eq. (107) to include the uncertainty in the calculated neutron multiplication factors due to 
the uncertainty in the nuclear data. 

9 Conclusions 

As summarized in Figure 10, the procedure of including all the uncertainties relevant to BUC 
criticality safety analysis is now complete. The presented MOCADATA procedure has been 
developed to make it possible by means of using hierarchical Bayesian MC procedures to con-
sider 

• all uncertainties in 

 −  the depletion calculations performed for the application case, 

 −  the chemical assay data evaluated for validating the depletion calculations, 

 − the critical experiments evaluated for estimating the bias of the criticality calculation code 
applied, 

 − the application case; 

• all uncertainties due to 

 −  empirical data required for performing statistical analysis, 

 −  the finite number of the data, and 

 −  the possible incompleteness of the data; 

• the fundamental variability due to the selection of probability distribution models required for 
evaluating empirical data. 

Criticism may be raised on the fact that the determination of ICF MC sampled )j(
nf  has been 

based on the observation that ICFs do not show any significant dependence on the burnup 
(cf. section 4.2.2). Well, as long as this observation is valid it is justified to take this observation 
as a basis. And this observation remains valid as long as compatibility tests [1] demonstrate that 
there is no significant dependence on the burnup. 

Let us nevertheless assume that it will be observed one day that some ICFs show a significant 
dependence on the burnup. In that case it is possible to proceed analogously to section 6, i.e., to 
evaluate the line vectors eq. (89) by means of a Bayesian MC regression analysis using the 
burnup as explanatory variable. As appears from Ref. [16], this regression analysis can be per-
formed with missing data, i.e., as described in section 4.2.2, with some missing elements in lϕ  of 
some line vectors lnφ , eq. (89), of the matrix nΦ . 
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Figure 10: Summary of the hierarchical Bayesian procedures presented in the paper on hand 
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So, whether the ICFs depend on the fuel’s burnup or not, in any case one gets, provided that one 
has a sufficient amount of data [13], MC samples 

( ) ( ) ( )[ ] .M,,1n,kkk n
MC
NDnBneffn K=∆+∆+=κ  (122) 

If a sufficiently large number M of samples is reached, the M samples can be evaluated by means 
of the methods described in sections 1.1 and 1.2 

In addition, the distribution of the obtained results nκ  can be fitted by means of a free-of-binning 
fit procedure [1] using, for instance, a Johnson empirical distribution model [1]. Once such a dis-
tribution model is fitted to the data eq. (122) by means of the Maximum Likelihood method [1] 
yielding the distribution model ( )Θ|f fit κ  it becomes possible to draw MC samples on the covari-

ance matrix ( )Θcov  of the parameters Θ  estimated by Θ̂ , to draw then MC samples on the 
expectation ][ΘE  of the parameters Θ , and to draw finally MC samples MCΘ  on Θ . These MC 
samples can be inserted into the applied distribution model so that one gets fit distributions 
( )MC|f Θκ . If these MC fit distributions correspond to the data, which can be tested by means of 

a Smirnov-Cramer-von Mises test [1], then MC samples MC
Sπ  on the probability eq. (6) can be 

calculated: 

( ) ( )∫
∞

κκ=>κ=π
maxk

MCMC
max

MC
S |fdS|kP Θ . (123) 

Let us assume that we have drawn N samples MC
Sπ . Arranging these N samples in an order statis-

tic 

( ) ( )NMC
S1

MC
S π≤≤π K , (124) 

the confidence level )1( jα−  can be calculated by means of eq. (16) for the greatest ( )j
MC
Sπ  

which just meets the inequality ( ) γ≤π j
MC
S  and hence eq. (8) for a prescribed margin γ . It can 

then be checked if the result )1( jα−  complies with the value prescribed for α . Note that for 
values usually prescribed for α  and γ  (usually 05.0=γ=α  is chosen) it is sufficient to evaluate 
the results nκ , eq. (122), directly by the methods described in sections 1.1 and 1.2. However, for 
values of γ  significantly smaller than the values usually chosen it is necessary, because of the 
condition given by eq. (18), to generate MC samples on the probability Sπ  according to 
eq. (123). 
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Appendix 

Application of a Bayesian MC procedure requires the definition of a prior pdf )(p Θ , cf. eq. (29) 
in section 3. Accomplishment of this requirement involves the probability-theoretical problem of 
the Bayesian methodology. As summarized in Ref. [8], there are mainly three approaches for 
choosing a prior density: 

• Concept of conjugate priors using the concept of conjugate distributions: For a given Likeli-
hood function )|(p ΘX  one is looking for a prior pdf )(p Θ  which belongs to the same distri-
bution family as the posterior pdf )|(p XΘ . This family must be of such a diversity that all 
information, experiences and subjective suppositions can be described [6]. 

• Empirical Bayes methods: The methods are decision-theory-based using a decision rule as 
estimator for Θ  which minimizes the risk with respect to the prior pdf [1], [9], [10]. 

• Concept of objective priors: The determination of such priors is based on frequentist or logical 
probability. 

The first and the second approach give rise to controversy due to scientific-theory-based doubts 
whereas the latter approach is beyond controversy. The concept of objective priors has however 
the disadvantage that in many cases coming along in real life no prior is known. The attention is 
therefore focused not only on this concept in the following, but also on the first concept. 

The justification of the concept of conjugate priors is the same as the justification of the appar-
ently arbitrary definition of the information matrix given in eq. (30) of section 3: It reasonably 
works (with respect to the information matrix see [1], section 5). The concept of conjugate prior 
pdfs offers computational advantages in many cases. In addition such priors have the property of 
being interpretable as additional data [6]. The question arises of how the total lack of knowledge, 
i.e. lack of prior information, is represented in the framework of this concept.  

Priors representing lack of knowledge have been derived by H. Jeffreys [5], and these priors, 
named as “objective priors” by Jeffreys, are now known as “Jeffreys’ priors” therefore. These 
priors are based on the principle that so-called “non-informative” priors, which represent the lack 
of knowledge, should be invariant under reparameterization [1], [6], [7]. 

The attention is focused in the following on the Normal distribution model since this model is the 
most used one in the paper on hand. The multivariate Normal pdf of an m-dimensional random 
vector ( )Tm1 x,,x K=x  is given by eq. (A-1), [1], 

( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −−−⋅

π
== − µxΣµx

Σ
ΣµxΘx 1T

2/12/m 2
1exp

||)2(
1,|p|p , ( )ΣµΘ ,= , (A-1) 

with expectation vector 

( ) ( )Tm1
T

m1 ]x[E,],x[E,,][ KK =µµ== µxE  (A-2) 

and covariance matrix 
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[ ].))((E)( TµxµxΣxcov −−==  (A-3) 

|| Σ  in eq. (A-1) denotes the determinant of Σ . 

Let X  be the matrix which represents a sample of n mutually independent observation n1 ,, xx K  
from the distribution eq. (A-1), 
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The Likelihood ( ) ( )ΣµXΘX ,|p|p =  for this sample is 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

−−−⋅∝ ∑
=

−−
n

1i
i

1T
i

2/n

2
1exp||,|p µxΣµxΣΣµX . (A-5) 

By straightforward application of the multiplication rules for vectors and matrices the Likelihood 
eq. (A-5) becomes  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧−⋅∝ −−

0
12/n Tr

2
1exp||,|p SΣΣΣµX , trace:Tr = , (A-6) 

with the mm×  matrix 

( ) ( )Ti

n

1i
i0 µxµxS −−=∑

=

. (A-7) 

Since, by definition, µxE =][ i , i∀ , and Σxcov =)( i , i∀ , the expectation of eq. (A-7) is, 
because of eq. (A-3): 

ΣS n0 = . (A-8) 

The right-hand side of eq. (A-6) is proportional to the Wishart pdf with n=ν  degrees of freedom 
and mm×  scale matrixΨ  [11] 

( ) ( ) ( ) ( )
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1expCm,;Wm,;Wishartp . (A-9) 

with the normalization factor [6], [7] 
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and with the expectation 

ΨWE ν=][ . (A-11) 
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So, as apparent from a comparison of eq. (A-6) with eq. (A-9) as well as eq. (A-8) with  
eq. (A-11), 0SW =  and ΣΨ = , n=ν . 

The natural choice for meeting the concept of conjugate priors is to look for all the pdfs which 
have the same functional form as the Likelihood, since then it is accomplished that the prior 
belongs to the same distribution family as the posterior pdf.  

So therefore, the Wishart pdf is the conjugate prior distribution for the inverse covariance matrix 
in a multivariate normal distribution model.  

If a matrix follows a Wishart distribution eq. (A-9), then the inverse of the matrix follows an 
Inverse-Wishart distribution  

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧−⋅⋅⋅=ν−≡ −++ν−ν− 12/)1m(2/1 Tr

2
1expCm,;WishartInvp ΨWΨWWΨ . (A-12) 

with ν  degrees of freedom, mm×  scale matrix W , and factor C given by eq. (A-10) [7]. 

(The notation 1−W  in ( )m,;WishartInv 1 ν− −W  may be regarded as confusing, but it is just the 
notation used in Ref. [6].) 

The expectation of (A-12) is (for 1m +>ν ) [6] 

WΨE 1)1m(][ −−−ν= . (A-13) 

Neither the expectation µ  nor the covariance matrix Σ  are usually known in real life. However, 
as described in section 3, the matrix eq. (A-4) contains information about the parameters 

( )ΣµΘ ,= . This information can be used to calculate numerical values, named as “estimates”, 
for the parameters. These estimates are related to the particular set of evaluated observations. To 
obtain estimates for the parameters one has to choose a method for proceeding from the observa-
tions to the estimates, i.e., one has to choose a function of the observations which is named as 
“estimator”. An estimator must have some desirable properties which determine its “goodness” 
with respect to its task. These properties, such as consistence, unbiasedness and efficiency (i.e., 
information content, cf. eq. (30) in section 3), are discussed in the theory of estimators, see 
Ref. [1] for instance. 

It is well known that the sample mean vector 

∑
=

=
n

1i
in

1 xx  (A-14) 

with the components 

∑
=

=
n

1i
ijj n

1 xx , m,,1j K= , (A-15) 

and the sample covariance matrix 
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with the elements 

∑
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−−
−

=
n

1i
jijkikkj )xx()xx(

1n
1S , m,,1j,k K= , (A-17) 

are unbiased estimators of µ  and Σ , i.e. 

µxE =][  (A-18) 

and 

ΣSE =][ , (A-19) 

respectively. Therefore x  and S  are sometimes written as µ̂  and Σ̂ , respectively. 

Equations (A-18) and (A-19) can be easily shown by using the fact that the expectation operator 
[]E  is a linear operator, i.e. ][b][a]ba[ yExEyxE +=+ . 

The sum ),(Q µX  of quadratic forms )()(),(q i
1T

iii µxΣµxµx −−= −  in the exponential function 
on the right-hand side of eq. (A5) can be rewritten as follows 
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This expression becomes since, due to eq. (A-14), only real quadratic forms survive: 
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By straightforward application of the multiplication rules for vectors and matrices to the first 
term of the right-hand side of eq. (A-20) one gets 

( ) ( ) )(n/)()1n(Tr),(Q 1T1 µxΣµxSΣµX −−+−= −− , (A-21) 

where S  is the sample covariance matrix eq. (A-16).  

The Likelihood eq. (A-5) thus becomes 
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So, the Likelihood has the functional form of  

• a normal distribution of the sample mean x  with expectation µ  (cf. eq. (A-18)) and covari-
ance matrix n/Σ   

multiplied with 
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• a Wishart distribution of the inverse covariance matrix with 1n −  degrees of freedom. 

As conjugate prior )(p Θ  for ( )ΣµΘ ,=  is therefore chosen 
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with hyperparameters 0µ̂ , 0n , 0ν  and 0Ψ  chosen to meet the requirements of diversity 
described at the beginning of this Appendix.  

These parameters can be interpreted as parameters which are related to a prior sample of 0n  
mutually independent observations 

0n001 ,, xx K  from the distribution eq. (A-1). Accordingly, 0µ̂  

is interpreted as sample mean 

∑
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=
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i0

0
0 n

1ˆ xµ  (A-24) 

with covariance matrix 

( ) 00 n/ˆ Σµcov = . (A-25) 

Analogously to eq. (A-16) the matrix 0Ψ  in eq. (23) can be interpreted as sample covariance 
matrix 
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with 

1n00 −=ν . (A-27) 

The set of prior observations 
0n001 ,, xx K  and the set of the present observations n1 ,, xx K  can 

be considered as one sample with the total sample mean 

( )xµxxµ nˆn
nn

1
nn

1ˆ 00
0

n

1i
i

n

1i
i0

0
N

0
+

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
= ∑∑

==

 (A-28) 

and the total sample covariance matrix 
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With this definition, the sample mean eq. (A-28) and the definition eq. (A-31), 

nnN 0 += , (A-31) 

the sample covariance matrix eq. (A-29) becomes 
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As follows from equations (A-16), (A-26) and (A-27), this expression becomes 
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Multiplying the Likelihood eq. (A-22) with the prior pdf (A-23) results in the posterior density 
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with the quadratic form 
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Insertion of the total sample mean eq. (A-28) in eq. (A-34) and straightforward application of the 
multiplication rules for vectors and matrices leads to the expression (A-35) for eq. (A-34), 
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So therefore, using equations (A-27), (A-31) and 

1Nn1nn 00N −=+−=+ν=ν  (A-36) 

the posterior pdf eq. (A-33) becomes 
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and hence with equations (A-32) and (A-36): 
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As follows from a comparison of this expression with eq. (A-23), the posterior pdf eq. (A-37) is 
of the same family as the prior pdf eq. (A-23). So the prior pdf eq. (A-23) meets the concept of 
conjugate priors described at the beginning of this appendix. 

Eq. (A-23) can be rewritten as follows 
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In compliance with the interpretation of the hyperparameters 0µ̂ , 0n , 0ν  and 0Ψ  as parameters 
which are related to a prior sample 

0n001 ,, xx K  the lack of any prior knowledge is regarded as the 
limit of the conjugate prior eq. (A-38) as 0n0 → , 11n00 −→−→ν  and 00 →Ψ , 

( ) 2
1m

,p
+

−∝ ΣΣµ . (A-39) 

This limit is just the multivariate Jeffreys prior density commonly proposed as non-informative 
prior density [6]. With this prior the posterior pdf eq. (A-37) becomes 
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This expression shows that the covariance matrix Σ  follows an Inverse-Wishart distribution 

( ) ( )m;1n;)1n(WishartInv|p 11 −−−∝ −− SXΣ  (A-41) 

with 1n −  degrees of freedom and mm×  scale matrix S)1n( −  (cf. eq. (A-12)), and that the 
expectation vector µ  follows a normal distribution 

( ) ( )n/,N,|p ΣxXΣµ ∝  (A-42) 

with expectation x  and covariance matrix n/Σ .  

So therefore, by means of Monte Carlo (MC) techniques a sample MCΣ  on Σ  can be drawn from 
the pdf eq. (A-41). Inserting this sample MCΣ  into the pdf eq. (A-42), a sample MCµ  on µ  can be 
drawn from ( )n/,N MCΣx . And finally, using the samples MCµ  and MCΣ  in the pdf eq. (A-1), a 
sample MCx  on the random vector x  can be drawn. 
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