

MOCADATA

Monte Carlo Aided Design and Tolerance Analysis

General hierarchical Bayesian procedure for calculating the bias and the a posteriori uncertainty of neutron multiplication factors

Usage of TSUNAMI in a hierarchical Bayesian procedure for calculating the bias and the a posteriori uncertainty of keff

Jens Christian Neuber and Axel Hoefer AREVA NP GmbH Germany Department NEEA-G

AREVA

jens-christian.neuber@areva.com

<u>axel.hoefer@areva.com</u>

CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition
 Cordoba, Spain, 27 – 30 October, 2009

Overview
Observations: Sources of Uncertainty
Observation: Hierarchy of Uncertainties
Bayesian Hierarchical Procedures
- Depletion Calculation and Validation
- Criticality Calculation and Validation
Conclusions

Observations: Sources of Uncertainty

Depletion Calculation and Validation

Observations: Sources of Uncertainty

Criticality Calculation and Validation

CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition Cordoba, Spain, 27 – 30 October, 2009

6

Most powerful tool of bearing the uncertainties from one level to the next one:

7

→ Bayesian Monte Carlo hierarchical procedures

 ← NCSD 2009 Topical Meeting, Sept. 13-17, 2009 Paper #33 (Neuber, Hoefer)

CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition Cordoba, Spain, 27 – 30 October, 2009

- MC sampling on a parameter region from the joint probability density function (pdf) p(x|Θ) of the parameters
- Problem: pdf usually unknown

8

• Necessary: pdf model derived from empirical data

CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition Cordoba, Spain, 27 – 30 October, 2009

ARE\

CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition Cordoba, Spain, 27 – 30 October, 2009

11

Second step: Evaluation of the sample's burnup / case c) (mixed case)

- For Labs to which case a) applies use a) \rightarrow lab-specific MC sample B_{IL}^{MC}
- For Labs to which case b) applies use b) → one MC sample for all labs

16

ARE\

19 CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition Cordoba, Spain, 27 – 30 October, 2009

Depletion Validation: Application of ICFs

Step E2: Evaluation of the matrix Φ : Solution of the missing data problem

- By construction, the matrix elements Φ_{ji} are possible outcomes for the random variables Φ_{ji} .
- Therefore, each line vector f_{λ} is a sample on the pdf $p(f|\Theta)$ of the random vector f
- If the matrix Φ were complete, the elements Φ_{ji} would be completely defined by the pdf $p(\Phi|\Theta)$, called "complete-data pdf" in the following.

Complete-data pdf can be written:

$$p(\mathbf{\Phi}|\mathbf{\Theta}) = p(\mathbf{\Phi}_{miss}, \mathbf{\Phi}_{obs}|\mathbf{\Theta}) = p(\mathbf{\Phi}_{miss}|\mathbf{\Phi}_{obs}, \mathbf{\Theta}) p(\mathbf{\Phi}_{obs}|\mathbf{\Theta})$$

$$predictive$$
distribution of
missing data
Solution of the
missing data problem
$$\rightarrow$$
 Data augmentation

CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition 21 Cordoba, Spain, 27 – 30 October, 2009

Depletion Validation: Application of ICFs

Step E2: Evaluation of the matrix \Phi: Solution of the missing data problem by data augmentation (performance)

- Each line vector f_λ of Φ is a sample on a multivariate normal distribution p(f|Θ)=N(E[f], cov(f)) with unknown expectation E[f] and unknown covariance matrix cov(f)
- No prior information about E[f] and cov(f) available
 → using a non-informative prior (e.g. p(Θ) = [det (cov(f))]^{-(m+1)/2})

Posterior Step becomes

$$cov(\mathbf{f}) \leftarrow W^{-1}(\lambda - 1, \Psi_{(i)}) \text{ with } \Psi_{(i)} = (\lambda - 1)^{-1} \begin{bmatrix} \mathbf{S}(\Phi_{obs}, \Phi_{mis}^{(i)}) \end{bmatrix}^{-1} \Rightarrow cov(\mathbf{f})_{(i)}$$
Inverted Wishart Distribution
and
$$E[\mathbf{f}] \leftarrow N(\hat{\mathbf{f}}_{(i)}, \lambda^{-1} cov(\mathbf{f})_{(i)}) \text{ with } \hat{\mathbf{f}}_{(i)} = \hat{\mathbf{f}}(\Phi_{obs}, \Phi_{mis}^{(i)}) \Rightarrow E[\mathbf{f}]_{(i)}$$
J.C. Neuber, A. Hoefer,
J.M. Conde Lopez, ICNC
2007, paper 243
J.C. Neuber, A. Hoefer,
PHYSOR 2008, Paper 525
$$A MC \text{ samples } f_{MC} drawn \text{ after each posterior step:} N(\mathbf{f} E[\mathbf{f}]_{(i)}, cov(\mathbf{f})_{(i)}) \Rightarrow \mathbf{f}_{MC}^{(i)}$$

CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition
 Cordoba, Spain, 27 – 30 October, 2009

Depletion Calculation and Validation

CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition
 Cordoba, Spain, 27 – 30 October, 2009

AREV

CSN / IAEA Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition Cordoba, Spain, 27 – 30 October, 2009

Criticality Calculation and Validation

Conclusions

What was the objective?:

- We are using tools ⇔ Nuclear data, calculation codes
- So, what is the bias in k_{eff} given these tools (given code and given nuclear data)?
- \rightarrow Evaluation of experiments for estimating the bias
- Uncertainties in the experiments have to be considered

Uncertainties in the nuclear data \rightarrow have to be considered in the application case

Uncertainties in the design data of the application case

The MOCADATA procedure presented fullfill all the requirements and takes into account

- all uncertainties due to experiments and application case
- all uncertainties due to
 - empirical data required for performing the statistical analysis
 - the finite number of the data and
 - the possible incompleteness of the data
- the fundamental variability due to the selection of probability distribution models required for evaluating empirical data.

