Enhancements to the Burnup Credit Criticality Safety Analysis Sequence In SCALE

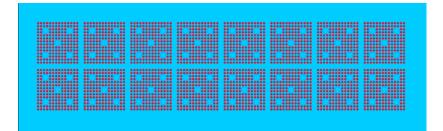
International Workshop on Advances in Applications of Burnup Credit

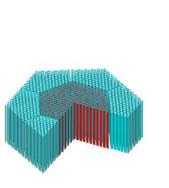
27 October 2009

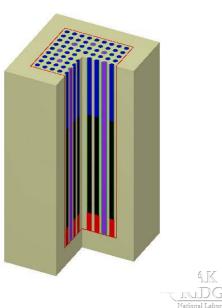
Georgeta Radulescu Ian C. Gauld

Outline

- Overview of STARBUCS features
- New STARBUCS capabilities available in SCALE 6
- Examples of STARBUCS applications

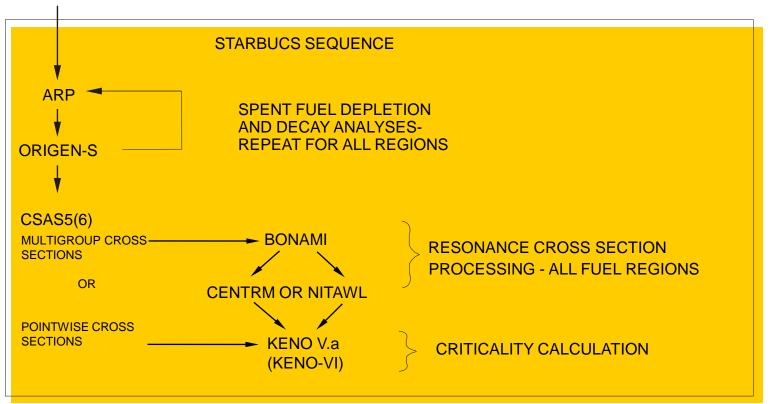

STARBUCS (Standardized Analysis of Reactivity for Burnup Credit Using SCALE)


- Purpose of STARBUCS Sequence
 - Initially developed by ORNL to support development of ISG-8 guidance
 - Motivated by need to automate SCALE criticality safety analyses employing burnup credit
 - Facilitate the application of an acceptable burnup credit approach in burnup credit analysis of spent fuel casks based on U.S. NRC Interim Staff Guidance ISG-8, Rev. 2, recommendations for PWR spent fuel
 - Code inputs allow adequate representation of the phenomena identified in ISG-8 to evaluate the impact of various licensing-basis model assumptions on k_{eff}
- Application Areas
 - Burnup credit criticality analyses for UO₂ spent nuclear fuel systems (e.g., spent fuel casks or pools)



Overview of STARBUCS Features

- Perform integrated depletion analysis, cross-section processing, and Monte Carlo criticality calculations for a 3-D system
- Uses existing, well-established modules in the SCALE code system (e.g., ORIGEN-ARP, CSAS, KENO V.a or KENO VI)
 - Use ENDF/B-V, VI, and VII cross-section libraries
 - Use pre-generated parameterized ORIGEN-ARP cross-section libraries for rapid depletion calculations
 - Many 3-D configurations may be analyzed



STARBUCS Analysis Sequence

STARBUCS

Input Options

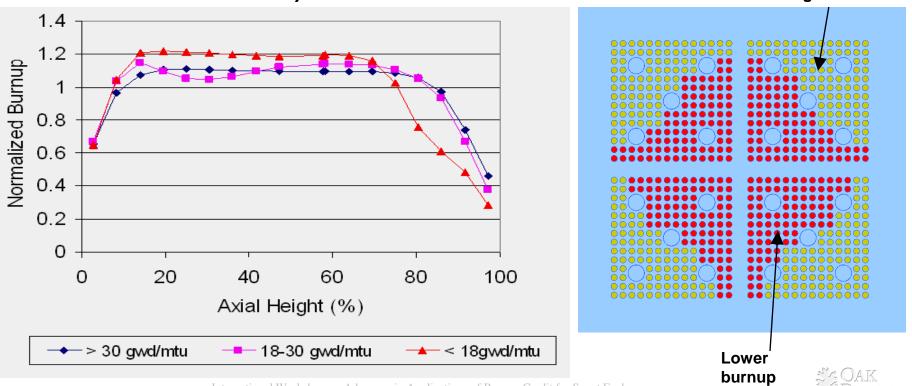
- Allow user-defined representation of
 - Irradiation history detail
 - Cooling time
 - Nuclides included in burnup credit calculation
 - Axial and radial variation of burnup within a fuel assembly
 - Isotopic composition bias/uncertainties

ORIGEN-ARP Depletion Libraries

- ORIGEN-ARP libraries for a variety of PWR and BWR UO₂ fuel assemblies are distributed with SCALE
- Users may create problem-specific ORIGEN-ARP libraries using the TRITON depletion sequence in SCALE for other configurations/conditions
- STARBUCS currently limited to one fuel type

Distributed Reactor and Assembly Libraries

Reactor Type*	Assembly Design Description		VVER-440 1.6%, 2.4%, 3.6%	
PWR LEU* 1.5 – 6.0 wt% 72 GWd/t	Combustion Engineering 14x14		VVER-440 3.82%	
	Combustion Engineering 16x16	VVER LEU	VVER-440 4.25%	
	Westinghouse 14x14		VVER-440 4.38%	
	Siemens 14x14		VVER-1000	
	Westinghouse 15x15		CANDU 37 element nat uranium	
	Westinghouse 17x17	CANDU	CANDU 28 element nat uranium	
	Westinghouse 17x17 OFA	MAGNOX	Natural uranium	
BWR LEU* 1.5 – 6.0 wt% 72 GWd/t	GE 7x7	AGR	LEU	
	GE 8x8	RBMK	1.8 – 2.2 wt%	
	ABB 8x8		14x14	
	GE 9x9		15x15	
	GE 10x10	PWR MOX	16x16	
	ATRIUM-9 9x9		17x17	
	ATRIUM-10 10x10		18x18	
	SVEA-64 8x8		8x8-2	
	SVEA-100 10x10		9x9-1	
		BWR MOX	9x9 ATRIUM-9	
			10x10 ATRIUM-10	


Selection of Burnup Credit Nuclides

- Actinides and fission product nuclides relevant to burnup credit
- All actinide and fission product nuclides available from ORIGEN with cross sections available to KENO
 - May be used to evaluate the influence of noncredited nuclides

Representation of Axial and Radial Burnup Variations within a Fuel Assembly

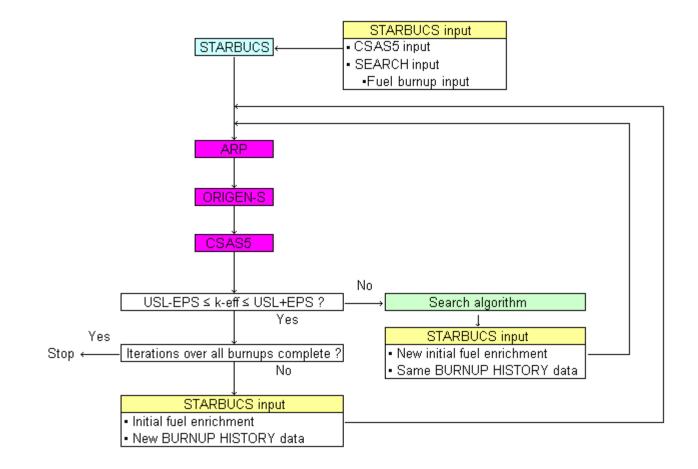
- Uniform burnup
- Axial (≤ 100 zones) and radial (≤ 7 zones) burnup variations
 - Built-in 18-zone axial burnup profiles that adequately bound an axial-burnup profile database (demonstrated in NUREG/CR-6801)

International Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing and Disposition, Cordoba, Spain, Oct 27-30, 2009

region

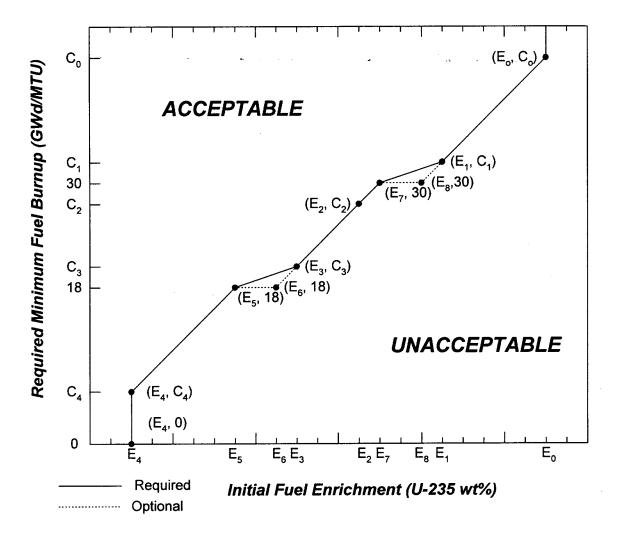
Isotopic Composition Bias and Bias Uncertainty

- STARBUCS will apply user-supplied isotopic correction factors to conservatively account for isotopic composition bias and/or uncertainty associated with the bias
- Alternatively, the uncertainty may be included in the upper subcritical limit defined by user



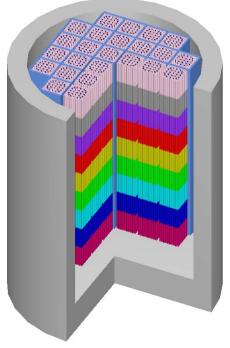
New STARBUCS Capability in SCALE 6: Generation of Burnup Loading Curves

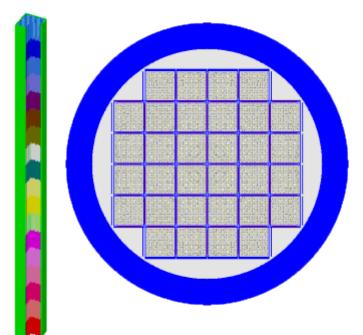
- STARBUCS performs iterative calculations to determine fuel enrichment and burnup combinations that result in a user-supplied upper subcritical limit (USL) (within a user-defined tolerance margin)
- For each user-supplied burnup value, STARBUCS performs a least-squares analysis of the results to determine an initial fuel enrichment value that will yield the USL value
- Between 2 and 6 iterations are necessary to achieve convergence for each user-supplied burnup value
- Input options
 - Maximum 100 input burnup values
 - Maximum 10 iterations for each burnup value
 - Reduced output



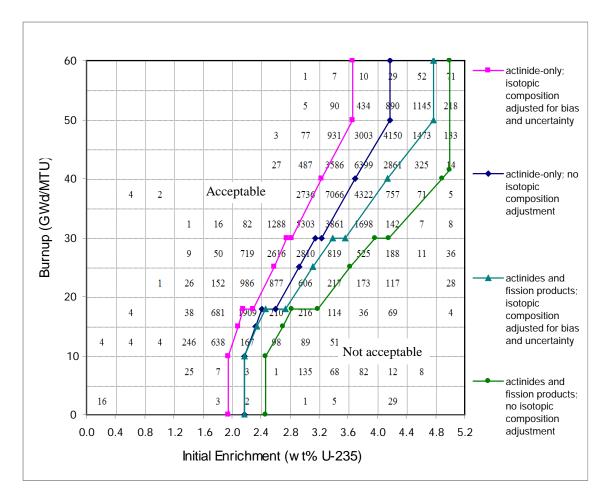
STARBUCS Burnup Loading Curve Sequence

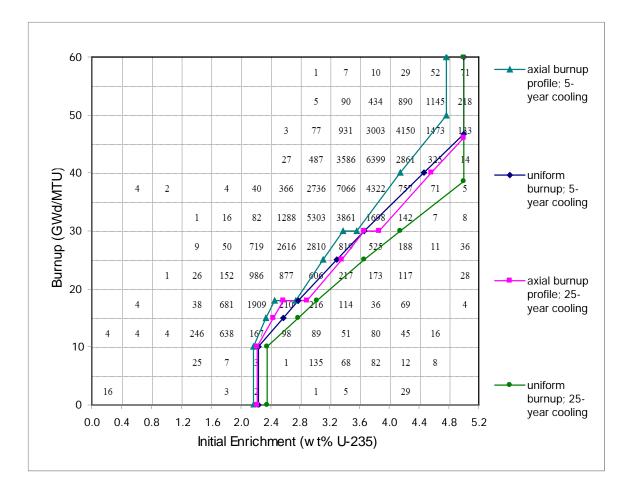
Loading Curve Generation


Output Summary Table

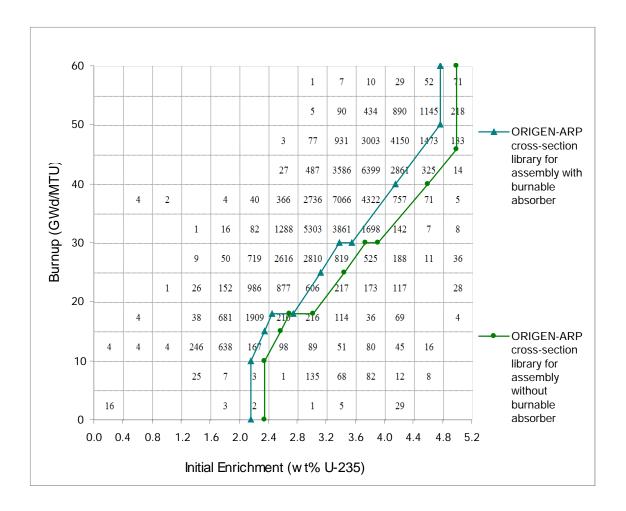

pass 1, param 10.00 converged in 5 iterations, enrichment 2.5648, pass 2, param 15.00 converged in 5 iterations, enrichment 2.7806, pass 3, param 17.90 converged in 5 iterations, enrichment 2.9066, pass 4, param 18.10 converged in 5 iterations, enrichment 3.2851, pass 5, param 20.00 converged in 5 iterations, enrichment 3.3900, pass 6, param 25.00 converged in 4 iterations, enrichment 3.7857, pass 7, param 29.90 converged in 1 iterations, enrichment 4.0001, pass 8, param 30.10 converged in 3 iterations, enrichment 4.2943, pass 9, param 40.00 converged in 3 iterations, enrichment 5.0358, pass 11, param 45.00 converged in 2 iterations, enrichment 5.3000, k-effective= 0.95321E+00 + or - 0.63149E-03 k-effective= 0.95061E+00 + or - 0.61577E-03 k-effective= 0.94924E+00 + or - 0.64648E-03 k-effective= 0.95115E+00 + or - 0.62479E-03 k-effective= 0.95019E+00 + or - 0.63385E-03 k-effective= 0.95450E+00 + or - 0.65149E-03 k-effective= 0.94603E+00 + or - 0.64125E-03 k-effective= 0.95340E+00 + or - 0.62224E-03 k-effective= 0.95187E+00 + or - 0.63865E-03 k-effective= 0.95291E+00 + or - 0.62495E-03 k-effective= 0.94542E+00 + or - 0.60287E-03

STARBUCS Application Examples


 Evaluation of the effects of various model assumptions on burnup loading curves for a generic cask


Impact of Credited Nuclides and Isotopic Composition Uncertainty on Burnup Loading Curves

Note: Loading curves were superimposed on a chart showing spent fuel inventory permanently discharged from U.S. commercial power reactors as of 2002.



Impact of Burnup Axial Variation and Decay Time on Burnup Loading Curves

Impact of Irradiation Conditions on Burnup Loading Curves

New STARBUCS Capability in SCALE 6: Continuous Energy Cross-section Libraries

- Continuous-Energy KENO (CE KENO)
- Simplifies input data and eliminates the need for resonance cross-section processing
- Reduces the total computer time for some problems

Comparison of STARBUCS Computer Time Using SCALE Multigroup and Continuous Energy Cross-section Libraries

		Computer time ^a (minutes)		k _{eff} ^b	
		SCALE ENDF/B-VI library			
Case No.	Model description	238 g ^c	CE ^d	238 g ^c	CE d
1	Infinite pin-cell model with uniform axial burnup; actinide only	1.5	4	1.1795	1.1863
2	Infinite pin-cell model with 18 burnup- dependent axial zones; actinide only	23.1	6	1.1033	1.1043
3	2 8 array of CE 14 14 assemblies; 18 burnup-dependent axial zones; 29 actinide + fission product nuclides	31.6	17.3	0.8724	0.8723
4	2 2 array of CE 14 14 assemblies; 18 burnup-dependent axial zones; 2 burnup-dependent radial zones; 29 actinide + fission product nuclides	64.5	14.7	0.7529	0.7545

^aCSAS5 computer time.

 b k_{eff} relative standard deviation is approximately 0.1%.

^c SCALE 238-group library based on ENDF/B–VI, resonance cross-section processing using BONAMI and CENTRM.

^d SCALE continuous cross-section library based on ENDF/B–VI.

Conclusions

STARBUCS features and input options

- Support SCALE criticality safety analyses employing burnup credit
- Enable simulation of many important burnup credit phenomena
- Enable evaluation of the impact of various licensing-basis model assumptions on criticality safety of spent fuel casks
- Depletion libraries may be generated by the user for plant specific operating assumptions and conditions
- Facilitate determination of loading curves

