MONTE CARLO POWER ITERATION:
ENTROPY AND SPATIAL CORRELATIONS

ANDREA ZOIA, M. NOWAK (CEA/SACLAY)
E. DUMONTEIL, A. ONILLON (IRSN)
J. MIAO, B. FORGET, K. S. SMITH (MIT)

July 6th 2016
Power iteration with Monte Carlo

The impact of correlations in criticality simulations

- Entropy and convergence
- Spatial moments and correlations
- Relation to neutron clustering theory

Perspectives
We would like to determine

- the **fundamental mode** \(\varphi_1 \)
- and the associated **fundamental eigenvalue** \(k_1 \) of

\[
L \varphi(r, v) = \frac{1}{k} \mathcal{F} \varphi(r, v)
\]

Critical Boltzmann equation for the **neutron flux** \(\varphi \)

Net disappearance operator \(L \)

\[
L f = \Omega \cdot \nabla f + \Sigma_t f - \int \Sigma_s(r, v' \rightarrow v) f(r, v') \, dv'
\]

Creation (fission) operator \(\mathcal{F} \)

\[
\mathcal{F} f = \chi(r, v) \int \nu(v') \Sigma_f(r, v') f(r, v') \, dv'
\]
A generalized eigenvalue equation

\[L \varphi = \frac{1}{k} F \varphi \]

Power iteration algorithm:

- **Guess solution**
 \[\hat{\varphi}^{(0)} = \sum_i c_i \varphi_i \]

- **Iterate**
 \[\text{for } m = 1, 2, \ldots, G - 1 \]
 \[\hat{\varphi}^{(m+1)} = L^{-1} F \hat{\varphi}^{(m)} \]

Hypothesis
\[|k_1| > |k_2| \geq |k_3| \geq \cdots |k_i| \geq \cdots \]

Convergence
\[\hat{\varphi}^{(G)} \simeq \varphi_1 + \sum_i c_i \left(\frac{k_i}{k_1} \right)^G \varphi_i \]
MONTE CARLO APPROACH: CRITICALITY SIMULATION

Fission chain

Source

1st gen. 2nd gen. 3rd gen. 4th gen. 5th gen.

Source

1st gen. 2nd gen. 3rd gen.

N₀ particles

Fission generations
POWER ITERATION: THE STANDARD (?) TOOL

Source 1st gen. ... Gth gen. (G+1)th gen. ... Mth gen.

N\textsubscript{0} particles

Convergence to the fundamental mode φ_1 (statistical equilibrium)

Stationarity: sample $\varphi_1 = \langle \varphi_1(g) \rangle$

Hypothesis: (I)ID replicas

What about correlations?
A TOY MODEL OF A NUCLEAR REACTOR

Assumption: the reactor is **critical**

\[k_{\text{eff}} = \frac{\bar{\nu} \Sigma_f}{\Sigma_c + \Sigma_f} = 1 \]

Expected fundamental mode \(\phi_1 \): **spatially uniform** over the box

Neutrons in a box

Scattering \(\Sigma_s = 0.27 \), Capture \(\Sigma_c = 0.02 \), Fission \(\Sigma_f = \frac{\Sigma_c}{\bar{\nu} - 1.0} \)

Descendants per fission \(\bar{\nu} = 2.5 \)

Reflecting boundary conditions
Delta-like source at the center of the box

Initial number of neutrons per generation $N = 10^4$
IMPACT OF SYSTEM SIZE L ON POWER ITERATION

Neutrons per generation $N = 10^4$

- $L = 100\text{ cm}$
- $L = 200\text{ cm}$
- $L = 400\text{ cm}$

Neutron clustering
IMPACT OF POPULATION SIZE N ON POWER ITERATION

Delta-like source at the center of the box

System size $L = 400 \text{ cm}$
IMPACT OF POPULATION SIZE N ON POWER ITERATION

System size $L = 400$ cm

Neutron clustering
Shannon entropy:

\[S(g) = - \sum_{i,j,k} p_{i,j,k}(g) \log_2[p_{i,j,k}(g)] \]

Generations to convergence:

\[m \approx \frac{L^2}{\ell^2} \]
THE EFFECTS OF CLUSTERING ON THE ENTROPY FUNCTION

Shannon entropy:

\[S(g) = - \sum_{i,j,k} p_{i,j,k}(g) \log_2[p_{i,j,k}(g)] \]

Theoretical expected value for independent replicas

Measured value

Impact of correlations between generations
ANALYSIS OF SPATIAL MOMENTS: THE CENTER OF MASS

\[\mathbf{r}_{\text{com}}(g) = \frac{\sum_i w_i \mathbf{r}_i}{\sum_i w_i} \]

\[x_{\text{com}}(\text{cm}) \]

\[L = 400 \text{ cm} \]
\[L = 200 \text{ cm} \]
\[L = 100 \text{ cm} \]

\[N = 10^3 \]
\[N = 10^4 \]
\[N = 10^5 \]
A STATISTICAL MECHANICS DESCRIPTION

Neutrons as a collection of N stochastic particles: \(\{x_1, x_2, \ldots x_i, \ldots x_N\} \)

A remarkable **identity** for the spatial moments:

Square COM

Mean square displacement: \(\langle r^2 \rangle (g) \)

\[
\langle r_{\text{com}}^2 \rangle (g) + \frac{1}{2} \frac{N - 1}{N} \langle r_p^2 \rangle (g) = \langle r^2 \rangle (g)
\]

Mean square pair distance: \(\langle r_p^2 \rangle (g) \)
Neutrons as a collection of N stochastic particles: \(\{x_1, x_2, \ldots x_i, \ldots x_N\} \)

A remarkable **identity** for the spatial moments:

\[
\langle r^2 \rangle (g) = \int x^2 \psi(x, g) \, dx
\]

Square COM

Mean square displacement:

\[
\langle r_{\text{com}}^2 \rangle (g) + \frac{1}{2} \frac{N - 1}{N} \langle r_p^2 \rangle (g) = \langle r^2 \rangle (g)
\]

Mean square pair distance:

\[
\langle r_p^2 \rangle (g) = \frac{\int dx \int dy |x - y|^2 h(x, y, g)}{\int dx \int dy h(x, y, g)}
\]

Average particle density \(\psi \)

Pair correlation function \(h \)
Forward time flow

Measure in z

\[\mathcal{L}_z \]

Source Q

\[\rho (\{\text{measure}\}|\{\text{source}\}) \]

\[\frac{\partial}{\partial t} \psi(z, t) = \mathcal{L}_z \psi(z, t) \]

\[\psi(z, 0) = Q(z) \]

Backward time flow

Measure in z

\[\mathcal{L}_{z_0}^* \]

Source z_0

\[\rho (\{\text{source}\}|\{\text{measure}\}) \]

\[\frac{\partial}{\partial t} G_t(z, z_0) = \mathcal{L}_{z_0}^* G_t(z, z_0) \]

\[G_0(z, z_0) = \delta(z - z_0) \]

\[\langle \mathcal{L} f, g \rangle = \langle f, \mathcal{L}^* g \rangle \]
\[\psi(z, t) = \int dz_0 Q(z_0) G_t(z, z_0) \]
THE PAIR CORRELATION FUNCTION

\[h(z_1, z_2, t) = \psi(z_1, t)\psi(z_2, t)U(t) \]

\[+ \int_0^t dt' \int dz' G_{t-t'}(z_1, z')G_{t-t'}(z_2, z') \rho_t(t')\psi(z', t') \]

Correlated measurements

\(z_1 \rightarrow z' \quad z_2 \rightarrow z' \quad z' \rightarrow z_0 \)

Source

\(U(t) = 1 - \int_0^t \rho_t(t')dt' \)
Average neutron density:

$$\psi(x, t) \rightarrow \psi(x) = \frac{N}{L^3}$$

Pair correlation function:

$$h(x, y, t) \rightarrow h(x, y) = \frac{N(N-1)}{L^6} + F(x, y; \chi)$$

Single dimensionless parameter

$$\chi = \frac{1}{N} \frac{L^2}{M^2}$$

System size L

Population size N

Migration area M^2
POWER ITERATION AS A FUNCTION OF χ

\[\| \frac{h(x, y)}{\psi(x) \psi(y)} \| \leq \chi = \frac{1}{N} \frac{L^2}{M^2} \]

\(\chi \approx 0.7\)

\(\chi \approx 0.07\)

Uniform initial condition
POWER ITERATION AS A FUNCTION OF χ

\(\chi \approx 0.7\)

Uniform initial condition
Mean square displacement

\[\langle r^2 \rangle = \int x^2 \psi(x) dx = \frac{L^2}{4} \]

Mean square pair distance

\[\langle r_{p}^2 \rangle = \frac{\int dx \int dy |x - y|^2 h(x, y)}{\int dx \int dy h(x, y)} \]

\[= 12 \frac{L^2}{\chi} \left[1 - \sqrt{\frac{8}{\chi}} \tanh \left(\sqrt{\frac{\chi}{8}} \right) \right] \]

\[\langle r_{p}^2 \rangle_{\text{id}} = \frac{L^2}{2} \]

\[\chi = \frac{1}{N} \frac{L^2}{\mathcal{M}^2} \]
Mean square displacement
\[\langle r^2 \rangle = \int x^2 \psi(x) dx = \frac{L^2}{4} \]

Mean square pair distance
\[
\langle r_p^2 \rangle = \frac{\int dx \int dy |x - y|^2 h(x, y)}{\int dx \int dy h(x, y)} = 12 \frac{L^2}{\chi} \left[1 - \sqrt{\frac{8}{\chi}} \tanh \left(\sqrt{\frac{\chi}{8}} \right) \right]
\]

Square COM
\[
\langle r_{com}^2 \rangle + \frac{1}{2} \frac{N - 1}{N} \langle r_p^2 \rangle = \langle r^2 \rangle
\]

Fluctuations of COM
\[\sigma_{com} = \sqrt{\langle r_{com}^2 \rangle} \]
SPATIAL MOMENTS: STATISTICAL ANALYSIS

Theory	**MC**
L [cm]	σ_{com}^x [cm]
100	1.2
200	4.7
400	18.3

Theory	**MC**
N	σ_{com}^x [cm]
10^5	5.8
10^4	18.3
10^3	57.8

CEA | July 6th 2016 | PAGE 25
Spatial moments

Power iteration
CONCLUSIONS

- Statistical mechanics approach to power iteration
- Neutron clustering can be suppressed by acting on χ
- Applicability to real-world (heterogeneous) systems?
Thanks for your attention

SPATIAL BEHAVIOUR OF THE NEUTRON DENSITY

Pure diffusion (ideal gas)

Initial condition: N_0 particles with uniform density
SPATIAL BEHAVIOUR OF THE NEUTRON DENSITY

Initial condition:
\(N_0 \) particles with uniform density

Fluctuations:
\[\langle n \rangle \pm \sqrt{\langle n \rangle} \]
SPATIAL BEHAVIOUR OF THE NEUTRON DENSITY

Initial condition: \(N_0 \) particles with uniform density

Fluctuations:
\[\langle n \rangle \pm \sqrt{\langle n \rangle} \]
SPATIAL BEHAVIOUR OF THE NEUTRON DENSITY

Initial condition:

\(N_0 \) particles with uniform density

Diffusion + branching + capture

(critical gas)
SPATIAL BEHAVIOUR OF THE NEUTRON DENSITY

Initial condition: \(N_0 \) particles with uniform density

Fluctuations:
\[
\langle n \rangle \pm \sqrt{\langle n \rangle}
\]
SPATIAL BEHAVIOUR OF THE NEUTRON DENSITY

Initial condition: \(N_0 \) particles with uniform density

Mixing time

\[\tau_D \approx \frac{L^2}{D} \]

Capture

Fission

Diffusion

Clustering
SPATIAL BEHAVIOUR OF THE NEUTRON DENSITY

Initial condition: N_0 particles with uniform density

Mixing time

$\tau_D \simeq \frac{L^2}{D}$

Renewal time

$\tau_E \simeq \frac{N_0}{\lambda}$

Clustering

Capture

Fission

Diffusion
Neutrons as a collection of N particles

Spatial moments:

- Mean square displacement: \[\langle r^2 \rangle (g) \equiv \frac{1}{N} \sum_i \langle r_i^2 (g) \rangle \]

- Mean square pair distance: \[\langle r_p^2 \rangle (g) \equiv \frac{1}{N(N-1)} \sum_{i,j} \langle |r_i (g) - r_j (g)|^2 \rangle \]

- Center of mass: \[\langle r_{com}^2 \rangle (g) \equiv \left\langle \left(\frac{1}{N} \sum_i r_i (g) \right)^2 \right\rangle \]