Outline

- Brief history
- Methods and capabilities:
 - Physics in a nutshell
 - Depletion routine
 - Group constant generation
 - HTGR capabilities
 - Typical applications
- Project organization and funding
- User community
- Serpent 2
Brief history

- The development of Serpent started in September 2004, under the working title “Probabilistic Scattering Game”, or PSG
- Topic for a D.Sc. thesis (completed in 2007)¹
- Built-in depletion routines and public distribution in 2008-2009

Serpent can be characterized as a three-dimensional continuous-energy Monte Carlo reactor physics code, that is specialized but not limited to lattice physics applications

- Re-writing of source code (Serpent 2) started in October 2010

Overview

- Three-dimensional geometry model based on surfaces, cells and universes (similar to MCNP and KENO-VI)
- Additional geometry types for reactor physics calculations:
 - “Nests”: cylindrical fuel pin and spherical particle
 - 3 basic lattice types with variations
 - Explicit model for stochastic HTGR geometries
- Criticality and external source modes for neutron transport simulation (Serpent 2 also tracks photons)
Physics in a nutshell (Serpent 1)

- The “laws of physics” are based on ACE format data libraries, with a few additional tricks:

 - Cross sections reconstructed on a unionized energy grid → speed-up in calculation but increase in memory demand\(^2\)
 - DBRC for resonant scattering kernel
 - Built-in Doppler broadening preprocessor routine\(^3\)

- Geometry routine based on combination of surface-tracking and the Woodcock delta-tracking method\(^4\) → well-suited for reactor calculations but poor performance in detector modeling

Depletion routine (Serpent 1)

- Built-in depletion routines for tracking nuclide concentrations as the fuel is burnt:
 - Radioactive decay and fission yield data read from ENDF format files
 - Decay / transmutation chains generated automatically without user effort
 - Bateman depletion equations solved using the CRAM matrix exponential method, developed at VTT specifically for Serpent
 - Typical depletion calculation tracks the concentrations of ~1500 nuclides
 - Optional equilibrium Xe-135 calculation

Group constant generation (Serpent 1)

- Serpent has the capability to automatically produce all input parameters needed for few-group nodal diffusion calculations:
 - Homogenized multi-group cross sections and diffusion coefficients
 - Scattering matrices
 - Point-kinetic parameters (forward flux-weighed)
 - Assembly discontinuity factors
 - Pin-wise power distributions
 - Effective delayed neutron fractions (“Meulekamp’s method”)

- A semi-deterministic method for homogenizing group constants in critical spectrum (B1 fundamental mode calculation)\(^6\)

HTGR calculation (Serpent 1)

- The delta-tracking method works exceptionally well in HTGR particle fuels
- Explicit model for stochastic geometries:
 - Coordinates of spherical objects are read from a separate input file
 - Works at several levels (TRISO particles in graphite / fuel pebbles in pebble-bed core)
 - Tested in full-core pebble-bed reactor calculations (ASTRA experiment), no major increase in calculation time compared to a regular-lattice calculation\(^7\)
 - Pebble-wise power distribution printed in a separate output file

Typical applications

- Serpent is specifically developed for:
 - Generation of homogenized multi-group constants
 - Fuel cycle studies and depletion calculations at the fuel assembly level

- But also:
 - Research reactor applications
 - Validation of deterministic transport codes
 - Educational purposes

Project organization and funding

- The “Serpent team” at VTT:

 Jaakko Leppänen
 Maria Pusa
 Tuomas Viitanen
 Ville Valtavirta (starting 10/2012)

- Funding from three projects:

 - SAFIR-2014 (National safety research programme): Four-year project (KÄÄRME) started in 2011, total budget of 955 k€
 - HPMC (EU): Three-year project started in 2011, total budget of 209 k€
 - NUMPS (Academy of Finland): Four-year project, started in 2012, total budget 1.3 M€
User community

- Serpent is used in 76 organizations in 27 countries around the world, number of registered users is around 180
- Serpent website and discussion forum:
 - http://montecarlo.vtt.fi
 - http://ttuki.vtt.fi/serpent
- Distribution of Source code by OECD/NEA Data Bank and RSICC
- Updates are distributed to registered users by e-mail (current update 1.1.18, distributed August 16, 2012)
- Second International User Group Meeting in Madrid, Spain, this week (September 19-21, 2012).
The Serpent code – user community
Serpent 2

The main focus at the moment is the development of Serpent 2, started in October 2012:

- Removing memory limitations in Serpent 1 and extending burnup capability to ~100,000 depletion zones (done)
- Parallelization using hybrid OpenMP / MPI techniques insted of just MPI (done)
- Photon and coupled photon / neutron transport routines mainly for the purpose of reactor physics and shielding applications (started)
- Development of variance reduction techniques (not yet started)
- Multi-physics applications (started, major focus from 2013 on)

- Serpent 2 beta testing started in January 2012 (~50 users)
- Public distribution is scheduled for 2013-2014