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[bookmark: _Toc362260400]Introduction and objectives
Criticality safety practitioners utilize a number of mature Monte Carlo production codes to carry out their work, as for instance SCALE, MCNP, MORET, TRIPOLI, MONK…. These computer codes are not static, however, and constantly evolve as computers become ever more powerful and innovative new analysis methods are developed by universities and national laboratories. The transfer of new, innovative Monte Carlo technology into the hands of practitioners is a continuing challenge for the criticality and reactor safety community: new methods need to be reviewed in depth for correctness by experts in the field; sufficient quality assurance and verification/validation must be performed to provide a high degree of confidence in these new methods; the assessment of their potential impact must be carried out; and practical guidance must be developed and promulgated to practitioners to enable correct and efficient application.

This work of the NEA expert group on Advanced Monte Carlo techniques (EGAMCT) follows the previous mandate of the Expert Group on Source Convergence in Criticality Safety Analysis (EGCVS) focused on fission source distribution convergence issues and transient suppression methods (convergence of both keff and the source distribution). Even if source convergence issues are not totally solved, many methodologies and algorithms have been analyzed, summarized and described by the EGCVS allowing to minimize or suppress these difficulties. Among them we have:
· simulating enough particles by placing them as wisely as possible and avoiding the symmetries;
· using various mitigating methods (stratified, matrix, Wieland, super-history, importance sampling…);
· using convergence tests (chi-square, Shannon Entropy…);
· using specific approaches (sandwich method…);
· using approximate deterministic solutions for providing the starting fission source.
These methods have several advantages and disadvantages, which have been studied and summarized in the reports of the EGCVS [N,N].

The objectives of the new EGAMCT are wider. They concern all issues related to the use of Monte Carlo simulations for criticality studies and global reactor analysis, mainly due to spatial and temporal correlations between fission neutron sites in successive cycles. In this work, the neutron source distribution is supposed to be converged, and the main interest lies in the ability to estimate/measure local tallies (estimation of the bias in flux-based observables, and study of under-prediction bias on mean quantities and on their uncertainties). Such knowledge is crucial, for two main reasons:
· in the case of low dominance ratio problems, the inter-cycle correlation can be so important that the resulting source distribution in MC solution can be put in doubt;
· Monte Carlo codes are used as reference codes for multi-physics simulations (with depletion, thermal-hydraulic, thermo-mechanic…).

This report describes the work done by the OECD/NEA/EGAMCT under the supervision of the Working Party on Nuclear Criticality Safety (WPNCS) during 2012-2017. It will be split into five parts. In section II we will provide the specifications of two different computational test problems of interest to criticality safety and reactor analysis that present particular difficulties for the estimation of local tallies. In section III we will present the result for this benchmark, focusing on under-sampling biases on the keff and on local tallies. Section IV will be dedicated to extensive studies of the test cases, outreaching the scope of the benchmark and highlighting the behavior and dependency of the under-sampling bias on local tallies mean and uncertainties estimation. The 5th section will present a stochastic modeling of spatio-temporal correlations in Monte Carlo criticality simulations capable to qualitatively explain the previous results. Finally sectionVI will provide guidance to Monte Carlo criticality practitioners facing these issues, and will discuss some of the recent metrics developed by Monte Carlo code developers to tackle local tallies calculations of loosely coupled systems.
[bookmark: _Toc398219041]

[bookmark: _Toc362260401]Description of the storage cask and reactor test cases to quantify under-sampling biases on Monte Carlo local tallies


The scope of the AMCT group is to investigate Monte Carlo criticality issues affecting the accuracy of the calculation of local quantities. In this aim, the ability to define test cases that can be shared between the members of the group and that can be freely distributed is of foremost importance. These test cases have to be defined in such a way that they will allow to easily put into evidence the difficulties of the simulation of loosely coupled systems with Monte Carlo criticality codes, but they also need at the same time interest a broad community and to be realistic. For these reasons, the the present section will describe two different realistic user case involving 3D effects, burned fuel and large dominance ratio: the first one will be focused on the calculation of various quantities of a transport cask, while the second one will involve configurations proper to reactor physics.


[bookmark: _Toc362260402]General description of the different models

This benchmark study seeks to determine how spatial and isotopic complexity induces a bias in reaction rate tallies.  Thus, it will consist of several stages of increasing complexity to isolate the effect of 2D, 3D, and isotopic complexity on flux tallies. A summary of the six benchmark models that are proposed here is provided in Table [BenchEx], where there are three models for reactor (R) configurations and three models for storage (S) configurations.  The details of each configurations are provided below, together with the description of the tally locations.

Table [BenchEx] Configurations for Benchmark Exercises.
	ID
	Configuration
	Geometry
	Isotopics
	Temperature
	Reaction Tally Locations

	S1
(Optional)
	2D Storage Cask
	17x17 in cask geometry radial slice
	Uniform 40 GWD/MTU with 5 years cooling time
	Uniform storage temperature
	Center and edge bundles

	S2
	3D Infinite Lattice
	17x17 bundle in infinite lattice
	18 axial zones; 40 GWD/MTU with 5 year cooling time
	Uniform storage temperature
	Top, mid-plane, and bottom

	S3
(Optional)
	3D Cask
	17x17 in full cask
	18 axial zones; 40 GWD/MTU with 5 year cooling time; Uniform radially
	Uniform storage temperature
	Center and edge bundles
Top, mid-plane, and bottom

	R1
(Optional)
	2D Quarter Core
	17x17 quarter core radial slice
	Uniform 20 GWD/MTU with equilibrium Xenon 
	Reactor – Uniform Mid-Plane
	Center and edge bundles

	R2
	3D Infinite Lattice
	17x17 bundle in infinite lattice
	18 axial zones; varying 20 GWD/MTU with equilibrium Xenon
	Reactor – 18 Axial zones
	Top, mid-plane, and bottom

	R3
(Optional)
	3D Quarter Core
	17x17 quarter core
	18 axial zones; 20 GWD/MTU with equilibrium Xenon; Uniform radially
	Reactor – Uniform radially, 18 axial zones
	Center and edge bundles
Top, mid-plane, and bottom





[bookmark: _Toc362260403]GBC-32 Canister Model

a. General description

The GBC-32 problem was chosen both because it is an important problem for criticality safety and shielding analysis. Furthermore, much of the fission source in the GBC-32 problem is concentrated near the top of the shipping cask, which may lead to under-sampling in the lower regions of the cask. This canister model is built to match the description provided in [Wagner1], the report which first defined the cask for burn-up credit studies. The canister design incorporates a fuel basket consisting of 32 fuel storage cells with neutron absorber panels sandwiched between the walls of adjacent cells. The panels are an aluminum clad B4C/Al cermet material much like Boral. The fuel storage basket is surrounded by a steel cask body with a thickness of 20 cm and a lid and baseplate, each of which are 30 cm thick. The fuel modeled in the canister is the Westinghouse 17×17 Optimized Fuel Assembly (OFA) with a rod outer diameter of 0.9144 cm (0.360 in.). All assemblies are modeled with an assembly average burnup of 40 GWd/MTU and 5 years of post-irradiation cooling time. 
The model for the benchmark exercise contains no radial fuel variation but does include axial variation of isotopic number densities in the spent fuel.  All materials in the model are assumed to be at a uniform temperature of 293K. The entire inner cavity of the cask is flooded with water with a density of 0.998 g/cm3.  The spent fuel is represented using the same 18 zone axial structure as the PWR core benchmark. The axial description is provided again in Tab. [COM] of Appendix A, and the isotopic number densities for the 18 zones are provided in Tables 2 – 19 in Appendix A. Isotopic number densities for water, cladding, stainless steel, the absorber panel core material, and the absorber panel cladding are provided in Appendix A, Tables 20 – 24, respectively.
The dimensions for the fuel assembly are provided in Appendix A Table 25. The fuel storage basket dimensions are provided in Table 26 of Appendix A and the cask dimensions are in Table 27 of Appendix A. The fuel basket and neutron absorber panels are set to be the same height as the active fuel.  This is not representative of actual cask designs, but is effective for the Monte Carlo analyses for which the benchmark cask is intended.  The axial regions above and below the active fuel, storage basket, and absorber panels are modeled as water; no modeling of the assembly end fittings or cask fuel assembly spacers is performed. 

b. The three different test cases and their associated tallies

The optional 2D storage cask slice denoted “Case S1” in Table [BenchEx] should use the compositions from axial zone 10, representing the fuel and cask slightly above the mid-plane.  The entire radial extent of the cask is included in the model. A radial view of this model appears Figure [S1], together with the labeling of the associated tallies: fluxes are calculated over the 8448 fuel volumes (1 axial zone, and 32 assemblies made of 264 pin-cells each).

The 3D infinite lattice of fuel storage cells denoted “Case S2” in Table [BenchEx] uses a single fuel assembly in a storage cell.  The axial extent of the model includes only the active fuel, storage basket, and neutron absorber panels.  The top and bottom surfaces of the model have leakage boundary conditions applied and the radial boundaries are reflective so that the model represents an infinite radial array of a single fuel storage cell. A radial view of this model appears Figure [S2], together with the labeling of the associated tallies: fluxes are calculated over the 4752 fuel volumes (264 pin-cells dived in 18 axial zones). Of particular interest will be rods (1,0) and (8,8) indicated on this Figure. These two rods (respectively called rod 1 and rod 2) will be the ones used for comparison.

The optional 3D cask model denoted “Case S3” in Table [BenchEx] uses the full radial and axial description of the cask model.  Leakage boundary conditions are applied to all boundaries of the model so that it models a single, isolated cask. A radial view of this model appears Figure [S3], together with the labeling of the associated tallies: fluxes are calculated over the 152064 fuel volumes (264 pin-cells per assembly dived in 18 axial zones, and 32 assemblies).


[image: ]
Figure [S1] Radial view of the 2D storage cask (S1) model showing assembly tally locations and labels

[image: ]
Figure [S2] Radial view of the infinite 3D assembly (S2) model showing tally locations associated to different pin-cells

[image: ]
Figure [S3] Radial view of the full 3D storage cask (S3) model showing assembly tally locations and labels


[bookmark: _Toc398219045][bookmark: _Toc362260404]PWR Core Model

a. General description

The models to be examined in this study are based on the Commercial Reactor Critical (CRC) benchmarks and the GBC-32 spent fuel storage and transportation canister model [Radulescu, Wagner1]. A simplified CRC PWR model was chosen because it is a realistic model of a PWR without being overly cumbersome. The simplified CRC PWR model is based on the Sequoyah Unit 2 Cycle 3 middle of cycle (MOC) state-point from Reference 0. This state-point was selected as it was near the desired cycle burn-up of 20 GWd/MTU, as shown in Tab. [COM], but the temperatures, moderator densities, and 135Xe number densities are selected to approximate a full power condition.  Sequoyah Unit 2 is a Westinghouse 4-loop PWR fueled with 17×17 fuel assemblies.  Cycle 3 used standard fuel with a rod outer diameter of approximately 0.95 cm (0.374 in.). A radial slice of the model is shown in Figure 3. The full core is a truncated 15×15 array of fuel assemblies, with baffle plates adjacent to the outer faces of the assemblies on the core periphery.  The water reflector outside the baffle plates is modeled, as is the core barrel. The outer diameter of the core barrel defines the radial boundary for the benchmark problem.  Both the core baffle and barrel are modeled as 304 stainless steel.
The simplified model developed for this benchmark exercise includes no radial fuel variation but does include axial variations in fuel isotopic number densities and temperatures. The moderator density and temperature also varies as a function of elevation but not radial position in heated channels. The cladding temperature is interpolated between the fuel and moderator temperatures such that 15% of the temperature change occurs from the cladding to the moderator. The soluble boron concentration is set to yield a calculated keff value near 1.0 in combination with an axial moderator density and temperature profile designed to give a somewhat realistic, flat core average axial power profile.
A uniform 18-zone axial structure is used to discretize the axial variations in 20.32 cm (8 in.) segments. The axial mesh is provided in Tab. [COM] of Appendix B.  Isotopic number densities are also provided in Appendix B for the fuel in Tables 2 – 19 and for the moderator in Tables 20 – 37. Isotopic number densities for the water reflector, cladding, stainless steel, and smeared axial reflectors are provided in Appendix B Tables 38 – 42.  Temperatures are specified for axially varying components in Appendix B Table 43 and for non-varying components in Table 44.  
Fuel assembly dimensions are provided in Appendix B Table 45, and other reactor dimensions are provided in Table 46.  The lower plenum and smeared reflector region use the temperature and moderator density for axial zone 1, while the upper plenum and smeared reflector region use the conditions from axial zone 18. Both the upper and lower fuel rod plenums are modeled as void filled cladding tubes, while the smeared reflectors are intended as approximate representation of fuel assembly end fittings and core internals. The lengths of the plenums and smeared reflectors are given in Appendix A Table 46. The smeared reflector lengths are determined such that a total of 30 cm is included in the model above and below the active fuel. An axial representation of the quarter core is sketched in Figure 2.

b. The three different test cases and their associated tallies

The optional 2D quarter core slice identified as Case R1 in Table [BenchEx] should use the compositions from axial zone 10, representing the core slightly above the mid-plane.  The baffle plates, water reflector, and core barrel will use the same temperature as the 3D model in Case R3. A radial view of this model appears Figure [R1], together with the labeling of the associated tallies: fluxes are calculated over 12828 fuel volumes (1 axial zone, and more than 48 full assemblies made of 264 pin-cells each).

The 3D infinite lattice of fuel assemblies recommended in Case R2 in Table [BenchEx] uses a single fuel assembly including plenums and smeared axial reflectors.  The top and bottom surfaces of the model have leakage boundary conditions applied and the radial boundaries are reflective so that the model represents an infinite radial array of a single fuel assembly. A radial view of this model appears Figure [R2], together with the labeling of the associated tallies: fluxes are calculated over the 4752 fuel volumes (264 pin-cells dived in 18 axial zones). As in the S2 test case, of particular interest will be rods (1,0) and (8,8) indicated on this Figure since these two rods (respectively called rod 1 and rod 2) will be the ones used for comparison.


The optional 3D quarter core model recommended in Case R3 in Table [BenchEx] uses the full radial and axial description of the core model.  Because there is no variation in the core compositions, the X and Y axes can be modeled as reflective or periodic about the origin.  The outer radius of the core barrel is a leakage boundary condition.


[image: ]
Figure [R1] Radial view of the 2D quarter PWR core (R1) model showing assembly tally locations and labels



[image: ]
Figure [R2] Radial view of the infinite 3D assembly (R2) model showing tally locations associated to different pin-cells




[image: ]
Figure [R3] Radial view of the 3D quarter PWR core (R3) model showing assembly tally locations and labels





[bookmark: _Toc362260405]Spreadsheet to report simulations results and general simulation parameters

A spreadsheet for reporting results is provided along with this benchmark specification, containing both general information (see Figure [SS1]) and simulation results (see Figure [SS2], with an example of the results obtained by IRSN in the R2 case). In the case of the simulation results, the information needed are the following:
· Institute is the name of the institute of the participant (e.g.: IRSN)
· Case is the name of the test case (e.g. R2)
· nHist is the number of neutron histories per generation in the simulation (the recommended set of neutrons per generation to use for these simulations is: 10, 200, 500, 103, 2.103, 5.103, 104, 2.104, 5.104, 105, 2.105, 5.105, 106)
· sType (optional) is the type of the initial neutron source (either converged or uniform)
· nSkip (optional) is the number of generation skipped before beginning tallies
· nSim (optional) is the number of independent calculations used to compute true standard deviations
· keff is the keffective estimation
· std-dev (optional) is estimation of the true standard deviation
· axial-zone number is the label of the axial zone (between 1 and 18)
· radially averaged flux (is the flux averaged over all radial components associated to the current axial zone)
· std-dev (optional) is the estimation of the true standard deviation on the radially averaged flux
· flux rod 1 is the estimation flux is the rod labeled 1
· std-dev (optional) is the estimation of the standard deviation on the flux rod 1
· flux rod 2 is the estimation flux is the rod labeled 2
· std-dev (optional) is the estimation of the standard deviation on the flux rod 2

Since the tasks related to the estimation of the variance uncertainties were not mandatory, all the data linked to the figure of merit are optional (e.g. calculation times, standard deviations, number of skipped generations etc.). 
[bookmark: _Toc398219046]

[image: Capture d’écran 2016-05-22 à 17]
Figure [SS1] General information about the participant and the simulations





[image: Capture d’écran 2016-06-05 à 15]
[image: Capture d’écran 2016-06-05 à 15]
Figure [SS2] Format required to report the simulations result
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	R1 : 2D quarter PWR core
1 axial zone  
12 828 fuel volumes
	R2 : infinite 3D assembly
18 axial zones  
4 752 fuel volumes 
	R3 : 3D quarter PWR core
18 axial zones  
230 904 fuel volumes 
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	S1 : 2D storage cask
1 axial zone  
8 448 fuel volumes
	S2 : infinite 3D assembly 
18 axial zones  
4  752 fuel volumes 
	S3 : full 3D storage cask
18 axial zones  
152 064 fuel volumes 


 

[bookmark: _Toc362260407]Benchmark result and analysis for the S2 and R2 assemblies: from bias on the keff to bias on local tallies
In this section we will report the results of the benchmark on the (non-optional) S2 and R2 test cases, for keff results in a first time, and for local tallies in a second time. Only a selection of interesting quantities will be presented, and discussed. The results for the other test case will be reported in the following section, while the analysis and the modelling will be presented section V.


0. [bookmark: _Toc362260408]Motivations of the benchmark

Most Monte Carlo codes calculate the eigenvalue and fundamental mode of the source distribution of fissile systems by simulating multiple “generations” of fission neutrons, where the fission sites created during one generation serve as the birth sites for neutrons in the next generation.  By simulating enough generations and neutrons, Monte Carlo codes can obtain accurate eigenvalue and reaction rate tally estimates. A phenomenon known as under-sampling occurs when the neutrons in one generation do not interact with all regions in a problem. Under-sampling results in generational eigenvalue estimates that have not incorporated information from all regions in the system, and reaction rate tallies that are “skipped” and not scored for an entire generation; because of these reasons, under-sampling can lead to inaccurate eigenvalue and reaction rate tally and tally variance estimates.
Reference (Brown, 2009) examines how under-sampling and cycle-to-cycle correlations introduce a bias in the eigenvalue for several difficult problems, including Whitesides’ K-effective of the World problem and Nakagawa (Whitesides, 1971; Nakagawa, 1993) and Mori’s 2D PWR quarter-core model (Brown, 2005). Brown found that using 1000 particles per generation instead of 5000 particles per generation results in a 100 pcm bias in the eigenvalue of the K-effective of the World problem, and a 20 pcm bias in the eigenvalue of the PWR problem.  
The impact of under-sampling was even more severe for fission reaction rate tallies, and Brown found that using less than 10000 particles per generation caused the fission rates near the center and the edge of the PWR core to differ by between 2 and 3 standard deviations from their reference values.
In reference (Mervin, 2013), Mervin et. al study how under-sampling and cycle-to-cycle correlations create poor variance estimates for flux tallies in full-core Monte Carlo simulations.  In the worst-case scenario Mervin found that the uncertainties were under-predicted by a factor of 40. 
It is the very same phenomenon of under-sampling biases that will be discuss in the following, using the benchmark introduced in the previous section.

0. [bookmark: _Toc362260409]Bias on the keff

All simulation results presented use ENDF/B-VII, with  treatment of thermal cross-sections. The neutron transport is analogous, apart for implicit captures, and temperatures effects (interpolation steps,…) and the use of probability tables for unresolved resonances are left to the participant’s choice.
The keff measured for the S2 and the R2 test cases are provided Fig. [BK]. They are presented as a function of , where nHist is the number of neutron per generation, and they are presented on a X-log scale. The storage cask assembly configuration is below criticality (keff ~0.936, ) while the PWR core assembly is above criticality (keff~1.01252, ). A linear fit of both results indicates that the under-sampling bias behaves as .
This is coherent with the results of previous mandates of this Expert Group on Advanced Monte-Carlo Techniques, which focused specifically on source convergence issues for criticality problems. However these previous mandates were focused on criticality problems, and this benchmark extends these previous numerical findings to reactor physics problem, similarly as in (Brown, 2009). Also, the under-sampling bias seems to be always negative for keff, no matter the sign of the reactivity.

[image: Capture d’écran 2016-06-05 à 15][image: ]
Figure [BK] Bias on the keff in the S2 test case (left) and R2 test case (right)

	



[bookmark: _Toc362260410]Bias on flux tallies

Fig. [RAF1] provides the flux as a function of the axial position az and as a function of the number of neutron per generation. The flux is radially averaged. In the case of the transport cask test case, the burn-up effect induces a strong increase in the reactivity in the upper part of the assembly (around az=16). In the reactor physics test case, the flux gradient is less steep, but due to burn-up effects the maximal flux values are also located in the upper part of the assembly (around az=14). However, in the R2 case, the flux seems to get flatter when the number of neutron per generation decreases. A careful analysis of Fig. [RAF2] confirms this trend, both in the S2 and R2 test cases. The strong flux gradient in transport cask assembly appears to attenuate this effect.

[image: ] [image: ] 
Figure [RAF1] Radially averaged flux versus axial position and versus number of neutrons per generations (nHist) in the S2 test case (left) and R2 test case (right).

[image: Capture d’écran 2016-06-05 à 15] [image: ]
Figure [RAF2] Radially averaged flux versus axial position (az) in the S2 test case (left) and R2 test case (right). Red dots are for high number of neutrons per generation (nHist=1000) while blue dots are for small number of neutrons per generation (nHist=100).

Fig. [RAF3] represents a sub-selection of the previous results: the flux is given as a function of the inverse of the number of neutrons per generation for two opposites positions in the assemblies, namely az=16 (upper part of the assemblies) and az=2 (bottom part of the assemblies). The results, presented on a X-log scale and fitted by a linear function, indicate clearly that the under-sampling bias behaves as . Unlike for the keff study, the sign of the bias seems to depend on the positioning: it tends to diminish the flux where the flux / the reactivity are high, while increasing it where the flux / the reactivity are low. More quantitatively, in the S2 test case, the flux is multiplied by a factor of 2 for 100 neutrons per generation (w.r.t. its asymptotic value) around az=2 (where it was small: 10-6 in a.u.). It only looses 3% of its high asymptotic value in az=16 (around 10-2 a.u.), still for nHist=100. For the R2 test case, the flux is multiplied by a factor of 1.5 for 100 neutrons per generation (w.r.t. its asymptotic value) around az=2 (where its value was 1.43*10-3 in a.u.). It looses roughly 20% of its asymptotic value in az=16 (around 3.7*10-3 a.u.), still for nHist=100. 


[image: ] [image: ][image: ][image: ]
Figure [RAF3] Radially averaged flux as a function of the inverse of the number of neutrons per generations (1/nHist) for the axial position az=2 in the S2 test case (top left) and R2 test case (top right) and for the axial position az=16 in the S2 test case (top left) and R2 test case (top right).














[bookmark: _Toc362260411]Summary

	Main conclusions
	Observations highlighted by the benchmark

· The absolute value of the under-sampling bias on the keff is inversely proportional to the number of neutrons per generations:   
· The sign of the undersampling bias is negative (keff is underpredicted) no matte the sign of the reactivity:  for  or 
· The absolute value of the under-sampling bias on local tallies is inversely proportional to the number of neutrons per generations: 
· The sign of  seems to depend on the position





[bookmark: _Toc362260412]Detailed analysis on the different test cases: effect of the tally location on local tallies biases
In the previous section, it was pointed out that local tallies were strongly affected by the under-sampling bias, and that the position of the tallies seemed to condition the sign of the bias. In this section we will investigate this effect in greater details. We will still use the test cases defined section II, but the simulation results presented are not subject to the benchmark anymore (in the sense of an inter-comparison). In a first time we will present the results for local tallies calculations. Then we will present the results of the biases (both on the tallies themselves and on their uncertainties) as a function of the positioning.
[bookmark: _Toc398219039]
0. [bookmark: _Toc362260413]Neutron source convergence and local tallies for all test cases

Prior to the calculation of local tallies, a study on the source convergence based on the use of the entropy has been led (see next section for a bibliography and discussions on the use of Shannon entropy as an indicator of source convergence). The results of these entropy calculations are provided Fig. [SHA]. In particular, the cycle numbers when the entropy criteria appeared to be converged were reported on this figure. The results are the following: 83, 389, 459, 37, 173, 137 respectively for the R1, R2, R3, S1, S2, S3 models. A natural ordering of these values shows that neutron sources take more time to converge in the R3 model than in the R1 model, and similarly that they take more time to converge in the S3 model than in the S1 model. This is due to the fact the R3 and S3 models are identical to R1 and S1 models apart from the fact that the axial extent of the model is taken into account together with burn-up effects. 
The neutronic coupling should also follow the same pattern than the entropy, and because of the axial extend R3 and S3 models should be loosely coupled compared to R1 and S1 models. 
The cycle’s values corresponding to the convergence of the entropy criteria are used in the following to define the limit between inactive and active cycles.


[image: ]
Figure [SHA] Shannon entropy as a function of the cycle number for the different benchmark cases (2000 cycles with 5.105 n/cycle). The vertical line indicates the value of the cycle number when the source appears to be converged based on the use of the Shannon entropy criteria.


After having defined this number of inactive cycles, GBC-32 and CRC models are simulated, and local tallies are scored during active cycles. Since most of the tallies proposed by Monte Carlo transport codes are based on the flux, the local tallies presented Fig. [NSD_S] (GBC-32 models) and Fig. [NSD_R] (CRC models) are normalized neutron source distributions.

In the case of GBC-32 models, the simulation results indicate that, in the case of the S2 infinite lattice assembly, the flux is strongly peaked around the most reactive axial zone (at 140 cm, around az=16). The side edges of the assembly have an extremely low flux due to the presence of B4C/Al absorbers panels. The S3 model is a full radial extent of the S2 assembly. The 32 assemblies are placed in a cask, and as expected the flux is maximal at the center of the configuration, were leakages can be neglected. The S1 model corresponds to a unique axial slice of the S3 model, which isotopic compositions are the one of the axial zone 10 of the S2 and S3 models. The X-Y profile of the neutron source distribution of this model is very close to the one of the S3 model, and the axial burn-up effects therefore seem to have practically no impact on the normalized source distribution.





In the case of the CRC reactor configurations, the same conclusions hold apart from three noticeable facts: 
· there are obviously no absorbing panels around the R2 assembly, and hence the X-Y flux gradient effect is far less pregnant
· the Z-flux distribution also is far more flat compared to the S2 test case thanks to the smeared axial reflector placed in the upper part of the R2 assembly combined to burn-up effects (the Z density profile of Fig. [NSD_R] is plotted on a linear scale while it is plotted on a log scale for the GBC-32 model Fig. [NSD_S])
· the R1 and R3 configurations are using a ¼ symmetry of the reactor core and reflections on the internal sides of these configurations might therefore be prone to enhanced correlations in the tallies located close to those sides
The X-Y-Z density profile of the R4 model Fig. [NSD_R] shows in a glance the power map in the full-core model.
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Figure [NSD_S] X-Y profile (integration over Z) of the normalized neutron source distribution (after convergence) for S1 (top left), S3 (top right) and S2 (bottom left) configurations. Bottom right plot: Z profile (integration over X-Y) of the normalized neutron source distribution (after convergence) for the S2 configuration. The red line indicates the “center of mass” of the neutron source distribution.



[image: ][image: ][image: ][image: ] [image: ][image: ]
Figure [NSD_R] X-Y profile (integration over Z) of the normalized neutron source distribution (after convergence) for R1 (top left), R3 (top right) and R2 (center left) configurations. Center right plot: Z profile (integration over X-Y) of the normalized neutron source distribution (after convergence) for the R2 configuration. The red line indicates the “center of mass” of the neutron source distribution. Last line: X-Y profile (integration over Z) and X-Y-Z profile of the normalized neutron source distribution of the R4 case.




0. [bookmark: _Toc362260414]Focus on biases on the mean of local tallies in the R1 & R2 test cases

The previous section, the study of the S2 and R2 configurations highlighted an under-sampling bias affecting the local tallies. It was shown in particular that this bias seemed to depend on the position. In order to lead a more extensive study of the spatial structure of this bias, simulations of the R1 test case (2D ¼th reactor core) were run for low statistics of neutrons per cycle (100 neutrons per generation) and for a reference case (106 neutrons per generation). The ratio of local tallies for each pin-cell is given Fig. [BIAS1]. This figure indicates a very striking pattern: the closer the tallies to the external sides of the reactor core, the more prone they are to show a positive under-sampling bias. And the closer to the center, the more prone they are to develop a negative under-sampling bias. Such a pattern seems to have already been observed (see (Brown, 2009) for instance).
The reflective boundary conditions do not seem to play a role as the absolute value of the bias seems to only depend on the radial positioning of the tally, no matter the proximity to the reflective boundary. 
Such a pattern rules out almost all possible parameters that might trigger the bias at a given location and set its value and its sign, apart from:
· the local number of neutron (the neutron “concentration”)
· the distance from the tally location to leaking boundaries
These observations seem to be comforted by a careful analysis of Fig. [BIAS2]. Indeed, the simulations results of the S2 (on a log scale) and the R2 (on a linear scale) configurations for all axial positions indicate that:
· in the asymptotic limit of very few neutrons per generations all flux values (for all axial positions) tends to the same asymptotic limit
· a corollary of the previous assumptions is that negative under-sampling bias happen where the neutrons concentration are the higher, while positive under-sampling bias occur wherever the neutrons concentrations are the smaller
· since the neutron concentration/flux are the smaller close to leaking boundary conditions, the distance to these boundaries might also be seen as a parameter to predict the sign of under-sampling biases

Therefore the conclusions drawn from the radial study of the R1 test case also stand for the axial study of the S2 and R2 test cases.
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Figure [BIAS1] Radial flux bias of the R1 model: the ratio of the flux for 100 neutrons per cycle and 106 neutrons per cycle is given for each pin-cell location.
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Figure [BIAS2] Axial flux bias of the S2 model (left) and of the R2 model (right). The neutron flux in a.u. is represented as a function of the number of neutrons per cycles. Each line is associated to a given value of the axial position (az) of the fuel volume where the flux is calculated. The red lines flag axial position of the fuel elements above the center of mass of neutrons, and the black lines flag axial positions below the center of mass of neutrons.  
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The previous configurations were used also to analyse the bias on the uncertainties of the local tallies. In the case of the R1 test case, Fig. [BIASU] shows that the apparent uncertainties naturally follow the trivial scaling of the central limit theorem. Thus, these uncertainties are maximal wherever the neutron concentrations are maximal (center of the core, far from the leaking boundaries) and they are minimal close to the leaking boundaries. 

When only one pin-cell of the R1 test case is simulated, with reflective boundary conditions at each of its sides, the apparent uncertainties are flat almost everywhere, while the true uncertainties are high close to each of the two sides (see Fig. [BIASU2]). More strikingly, the central limit theorem works nicely to predict the scaling of the apparent uncertainties as a function of the number of generation, but it fails for to predict the scaling of true uncertainties. Therefore, the ratio between true and apparent uncertainties gets unbounded in the limit of high number of generations.
This clearly indicates that:
· the ergodicity of the system is broken, since averaging over generations/time is not equivalent to averaging over configurations
· the statistics of the tallies do not follow the central limit theorem. They seem to obey a law that depends on 
· the local number of neutrons (the neutron concentration)
· the boundary conditions since the pattern governing the true uncertainties seems to be strongly affected by reflective boundary conditions, at least for tallies in their vicinity
· more generally by the cycle-to-cycle correlations. These correlations have to be taken into account to build a proper estimate of the variance on tallies
A work on proper estimate for uncertainties on local tallies based on a generalization of the central limit theorem has been published recently (T. Ueki 2015, T. Ueki 2016). 

Up to this point, the bias in the estimation of the uncertainties is not an under-sampling bias properly speaking: both the R1 model and the pin-cell example discussed here were simulated with large numbers of neutrons per generation. But a detailed analysis of the different GBC-32 and CRC models reveals that the cycle-to-cycle correlation themselves depend on the number of neutrons per generation. This can be seen looking at the interplay between cycle-to-cycle (also called temporal) correlations and spatial correlations in our pin-cell example. Indeed, Fig. [STC] reveals the strong similarity between the cycle-to-cycle correlation matrix (given for different positions) and the spatial correlation matrix (given for different lag values). This can be understood by an analysis of the left plot of Fig. [CLUS], where a Dirac initial source is used at the beginning of the pin-cell simulation: when spatial correlations are strong, they trigger temporal correlations. Furthermore, the right plot of Fig. [CLUS] reveals that even for decent statistics of neutron per generation (105) the spatial correlations do not vanish. Apart from the intrinsic shocking nature of this assertion, this seems to indicate that the under-sampling bias affecting the estimation of the uncertainties on local tallies might very well persist up to reasonable statistics of simulated neutrons per generation. 
The interpretative frame to understand both the bias on the local tallies and their uncertainties is based on the neutron clustering mechanism (Dumonteil et al., 2014), and can be understood in the light of statistical mechanics of branching processes. As the mathematical formalism is heavy, it is detailed in appendix (Appendix C). 
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Figure [BIASU] Simulation of the R1 configuration with 104 active generations and 104 neutrons per generation. Left plot: relative estimated (“apparent”) 1- uncertainties (%), right plot: true 1- uncertainties estimated with independent simulations (%).
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Figure [BIASU2] Simulation of one pin-cell of the R1 configuration with reflective boundary conditions on all edges. Left plot: true 1- uncertainties estimated with independent simulations (%), central plot: relative estimated  (“apparent”) 1- uncertainties (%), right plot: ratio between true and apparent uncertainties. nSRC is the number of neutrons per generation and nCA is the number of active cycles.
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Figure [STC] The UO2 pin-cell is divided into twenty cells (from cell 1 at one extremity to cell 20 at the other extremity). First line, from left to right: cycle to cycle flux correlations in cells 1, 5 and 10 respectively. Second line, from left to right: cell to cell correlations with temporal lags of 0, 50 and 200 respectively.
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Figure [CLUS] Left plot: Simulation with 1000 cycles and 1000 neutrons per cycle of the UO2 fuel pin with reflective boundary conditions. Right Plot: Simulation with 1000 cycles and 105 neutrons per cycle of the UO2 fuel pin with reflective boundary conditions. nSRC is the number of neutrons per generation and nCycle is the overall number of cycles.
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Based on an analysis of the R1 model and using the formalism of neutron clustering discussed in Appendix C, an interpretative frame for the under-sampling bias on local tallies has been proposed recently (Dumonteil, 2017). Its main features are once again grasped by the simplified model of branching Brownian motion, but combined with the following properties:
· the neutrons are transported on a bounded domain that has leakages boundary conditions on its edges
· a population control algorithm that closely mimics the renormalization algorithm of Monte Carlo criticality codes ensures that the number of neutrons simulated is kept constant over generations
· the system is loosely coupled (the typical mean free path before capture of neutrons is small compared to the system size)
Typical realizations of neutron population evolving in such 1-D configurations are given Fig. [TRAV]. The left plots of this figure shows that the neutron population, after some times, get clustered according to the mechanism previously discussed. But in spite of the leakages boundary conditions, one can see that the clusters are reflected when hitting the boundaries of the domain. This can be understood recalling that the neutron population is kept constant: when a cluster hit the leaking boundary, the population control algorithm resamples the neutrons at the exact same place using the splitting technique. Instead of being resampled according to the fundamental mode, the clustered population is resampled at the boundary, up to the point when the cluster changes its direction (left bottom plot of Fig. [TRAV]). Therefore the clustering mechanism imposes an artificial fission cross section near the leaking boundaries. The cluster travels back and forth in the limit of the bounded domain, bouncing from one boundary to the other. The overall result on the average flux  is that, instead of recovering the typical cosine shape characteristic of the critical diffusion equation, the asymptotic limit of strongly clustered population of neutrons produces a flat flux shape (right plot of Fig. [TRAV]). Since the spatial correlation function is inversely proportional the neutron concentration (see previous subsection), the asymptotic limit is recovered for loosely coupled systems and for small population of neutrons. The under-sampling bias phenomenology discussed Section IV is qualitatively very well described.
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Figure [TRAV] Left plot: x positions of the particles versus time t for 2 realizations of a mass-preserved binary branching Brownian motion on a segment (between -20 and 20) with Dirichlet boundary conditions and with N = 50 particles. Left top plot: first realization observed between t = 0 and t = 300, left bottom plot: second realization observed between t = 0 and t = 7250. Right plot: Normalized particle density - obtained by averaging over t = 1000 (a.u.) - for a mass-preserved binary branching Brownian motion on a segment (between -20 and 20) with Dirichlet boundary conditions and with N particles. Black curve: N = 1000, blue curve: N = 100, red curve: N = 10, green curve: N = 5.

More quantitatively, but still in the framework of branching Brownian motion, Ref. (Dumonteil, 2017) proposes to model such an effect by the introduction of a supplementary term in the critical transport/diffusion equation, that account for the pair interactions between neutrons due to the population control algorithm (the probability to split or to kill a neutron depends on the number of other N-1 neutrons). Those pair interactions are linked to the spatial correlation function g that is known from (De Mulatier et al, 2015) and are shown to lead to a modification of the bilan equation with a quadratic term in the neutron flux  :
[image: Macintosh HD:Users:ericdumonteil:Desktop:Capture d’écran 2017-05-30 à 15.08.37.png]
where  is the fission rate and  is the capture rate. This equation is known as the Fisher equation in mathematics, or as the F-KPP equation in theoretical physics (upon the names of people involved in its discovery Fisher, Kolmogorov, Petrovsky, Piscunov).  Its solution is a symmetric traveling wave that very nicely reproduces the shape of the right plot of Fig. [TRAV], in the under-sampling limit. The prediction of such a model is therefore that the bias should behave as  where L is the typical dimension of the system, l is the typical mean free path of neutrons before capture, and N is the number of neutrons per generation. This explains the 1/N bias discussed in this section.
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	Main conclusions
	Observations highlighted by the analysis of the different test cases

· The absolute value of the under-sampling bias on local tallies is inversely proportional to the number of neutrons per generations: 
· Tallies seem to be over-estimated close to leaking boundaries ( when  is close to a leaking boundary) while they seem to be under-estimated at the center of the geometry / far from the leaking boundaries ( when  is far from a leaking boundary)
· The under-sampling bias seems to flatten the flux spatial distribution

· Uncertainties on local tallies can only be under-estimated: 
· For large number of neutrons per cycle:
· apparent statistical errors on tallies under-estimated close to reflecting boundaries. Reflecting boundary conditions increase the correlations and the true uncertainties in their vicinity, compared to apparent uncertainties
· more generally, bias on the uncertainties on local tallies depends on cycle-to-cycle correlations
· work on proper statistics for branching gaz: generalized central limit theorems, see work of T. Ueki for instance (T. Ueki 2015, T. Ueki 2016)
· For small number of neutrons per cycle:
· under-sampling bias on the uncertainties on local tallies due to spatial correlations which trigger an extra contribution to cycle-to-cycle correlations

· [bookmark: _GoBack]These biases on the first two moments of the flux probability distribution seem to depend on the positions which itself depends on spatial correlations. Spatial correlations seem to be key in the understanding of biases on local tallies

· An interpretative frame has been proposed to explain biases on local tallies. It involves a combination of spatial correlations (neutron clustering, see Appendix C) and leakage boundary conditions.
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A. Entropy	Comment by Eric D: // To complete => F. Brown?

B. The interplay between clustering and entropy

As mentioned in Appendix C, two key issues are known to affect the neutron population during power iteration and have therefore attracted intensive research efforts: fission source convergence and correlations.

Concerning the former, a slow exploration of the viable phase space by the population implies a poor source convergence. In particular, it has been shown that the convergence of keff might be faster than that of the associated fundamental eigen-mode, which is expected on physical grounds, the former being an integral property of the system and the latter being a local property (Lux and Koblinger, 1991). The rate of convergence depends on the separation between the first and the second eigenvalue of the Boltzmann equation, the so-called dominance ratio: the closer to one the dominance ratio becomes, the poorer the convergence (Lux and Koblinger, 1991; Ueki et al., 2004). If Monte-Carlo tallies are scored before attaining equilibrium, biases on the estimation of the variance may appear, and monitoring the convergence of keff might be insufficient so as to determine the convergence of the whole population (Ueki and Brown, 2003; Ueki, 2005; Dumonteil et al., 2006; L’Abbate et al., 2007).

Several tools have been proposed to assess the spatial convergence of fission sources, among which, one of the most popular, is the entropy of the fission sources (Ueki et al., 2003; Ueki, 2012; Ueki and Brown, 2003; Ueki, 2005). The idea behind the entropy function is to superimpose a regular Cartesian mesh to the viable space and to record the number of fission sites for each cell of the mesh, at each generation. This allows computing the so-called Shannon entropy S (Li and Vitanyi, 1997), which is defined as
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where pi,j,k(g) is the (statistically weighted) number of fission source particles in the cell of index i,j,k at generation g divided by the total number of source particles in all cells at generation g. The entropy function is expected to provide a measure of the phase space exploration as a function of the number of generations (Li and Vitanyi, 1997; Cover and Thomas, 1991): when the neutron distribution attains its stationary shape, the entropy S converges. A prominent advantage of the entropy is that S is a single scalar value, whose evolution condenses the required information on the spatial repartition.

Moreover, as apparent from Eq. (1), the entropy S of the source distribution at generation g is bounded, namely,
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where B is the number of cells of the spatial mesh. This property ensures in particular that the variations of S will be bounded, and that the highest value of the entropy will be reached in the case of a perfect equi-partition. The entropy function is nowadays a standard tool for most production Monte Carlo codes, although some concerns have been raised about possible issues related to its use in convergence diagnostics for loosely coupled multiplying systems (see, e.g., the analysis in Shi and Petrovic, 2010a,b; Ueki, 2005).

The latter issue with power iteration in Monte Carlo simulation concerns the impact of correlations induced by fission events: physically speaking, as illustrated above, a neutron can only be generated in the presence of a parent particle, which induces generation-to-generation correlations (Lux and Koblinger, 1991; Sjenitzer and Hoogenboom, 2011). This is a widely recognized problem, which is expected to affect the convergence of Monte Carlo scores (Ueki, 2012; Brown, 2009; Ueki, 2005). Correlations between generations have been often studied within the mathematical framework provided by the eigenvalue analysis of the Boltzmann critical equation (Brown, 2005; Sutton, 2014a,b). Further work on correlations has concerned techniques aimed at improving the standard deviation estimates of Monte Carlo scores (Gelbard and Prael, 1990; Ueki et al., 2003, 2004; Ueki, 2005; Dumonteil and Malvagi, 2012).

As discussed in Appendix C, due to the asymmetry between correlated births by fission and uncorrelated deaths by capture and leakage, neutrons initially prepared at equilibrium will be preferentially found clustered close to each other after a few generations (Dumonteil et al., 2014). This clustering phenomenon might induce a strongly heterogeneous spatial repartition of the neutron population, which randomly evolves between generations (Dumonteil et al., 2014; Zoia et al., 2014; de Mulatier et al., 2015).

In the following, we will show that neutron clustering, not surprisingly, also affects the convergence of the fission sources: because of fission-induced correlations, the entropy function might in turn be ineffective at detecting potential deviations of the neutron population with respect to the expected equilibrium.

In order to assess the behavior of the entropy function in the presence of fission-induced correlations, we will work out an example that is simple enough for exact results to be analytically derived and compared to the Monte Carlo simulations, and yet retains the key physical features of a real system (Miao et al., 2016).

Let us therefore consider a benchmark model of a homogeneous reactor core consisting of a collection of N neutrons undergoing scattering, capture and fission within a box of volume V = L3. To simplify the matter, we will assume that neutrons can only be reflected at the boundaries. The random displacements of the neutrons will be modeled by branching exponential flights with constant speed v; scattering and fission will be taken to be isotropic in the center of mass frame.

The physical parameters of this prototype reactor will be the following:
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where s is the scattering cross section, c is the capture cross section, and f is the fission cross section (in 1/cm). The parameter  denotes the average number of secondary neutrons per fission. Observe that on the basis of the cross sections defined above the system is exactly critical, i.e.,
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for any choice of . For our simulations, we have set  = 2.5. The fundamental eigenmode associated to keff = 1 corresponds to an equilibrium distribution that is spatially homogeneous over the box, as expected on physical grounds.

This benchmark reactor model can be easily implemented and solved by power iteration within a Monte Carlo code. In order to probe the effects of neutron clustering on the convergence of power iteration, we have performed several Monte Carlo critical simulations of such system by varying the number N of particles per generation and the size L of the box, the other physical parameters being unchanged. For all configurations, we have assumed that the power iteration is started with a point source consisting of N neutrons located at the center of the box. As the number of generation increases, the neutron population spreads over the whole box, and is forced to converge towards the fundamental eigenmode by the power iteration. However, this spread is counter-reacted by the spatial correlations induced by fission chains, and clustering might then come into play.

The distribution of the fission sites as obtained during the power iteration for a fixed number N = 104 of initial particles and different box sizes L is displayed in Fig. 6.
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Figure [FS] Distribution of fission sites during Monte Carlo power iteration as a function of generations g, for three different reactor sizes L. The guess source at g = 0 consists of N = 104 neutrons located at the center of the cube. Power iteration is run for 1000 generations. Top: L = 100 cm; center: L = 200 cm; bottom: L = 400 cm.

When the neutron density is high (i.e., L is small for a given N), the fission sites converge to an equilibrium configuration where neutrons are homogeneously spread over the whole volume, with mild fluctuations mostly due to scattering. As L increases, spatial fluctuations due to the competing mechanisms of fission, absorption and scattering become more apparent. For even larger L, the neutron population displays patchiness, with neutrons randomly moving around the box grouped into a large cluster. Previous investigations based on the diffusion theory approximation have indeed shown that spatial clustering is quenched when L2 << N M2, where M2 is the migration area (de Mulatier et al., 2015).

Fluctuations due to correlations are therefore expected to decrease for decreasing box size L when keeping N constant, which is coherent with our numerical findings. It is instructive to compute the Shannon entropy S(g) for the power iteration simulations examined here. To fix the ideas, we will assume that each box side L is partitioned into 8 spatial meshes, which implies B = 83 = 512. For the simple model considered here, the theoretical ideal entropy associated to the fundamental eigenmode can be exactly computed, and reads S = 9.

Actually, for a finite number N of particles per generation, the theoretical expected Shannon entropy is always lower than the ideal value S. For the homogeneous reactor, the expected Shannon entropy at finite N can be explicitly computed and reads
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which depends on the number of spatial meshes B and of the number of particles N. It can be shown that SN < S. When the number of neutrons N is very large, the expected entropy converges to the ideal reference value. In the following, we will compare the measured entropy S(g) as a function of generations to the expected value SN.
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Figure [HC] Homogeneous cube reactor for the benchmark problem. The behavior of the measured Shannon entropy S(g) during Monte Carlo power iteration as a function of generations g, for three different reactor sizes L and fixed number N of neutrons per generation. The guess source at g = 0 consists of N = 104 neutrons located at the center of the cube. Power iteration is run for 1000 generations. Upper red curve: L = 100 cm; central green curve: L = 200 cm; lower blue curve: L = 400 cm. The dashed red line represents the expected entropy value SN as in Eq. (5), and the solid black line is the ideal expected entropy S=9 for an infinite number of particles per generation.

The behavior of the measured entropy S(g) corresponding to the reactor configurations presented in Fig. [FS] is displayed inFig. [HC]. The number m of generations taken by the neutron population to achieve spatial convergence (i.e., to explore the whole reactor) starting from a point source can be roughly estimated by m = L2 / l2, l2 being the mean square displacement of a particle per generation. The quantity l2 can be estimated during the Monte Carlo simulation, and for the example discussed here we have l2 = 175 cm2 for L = 100 cm, l2  = 185 cm2 for L = 200 cm, and l2  = 190 cm2 for L = 400 cm, which yields m = 57 for L = 100 cm, m = 215 for L = 200 cm, and m = 830 for L = 400 cm, respectively.

This is consistent with the number of generations taken by the measured entropy S(g) to attain convergence, as shown in Fig. [HC]. When L = 100 cm, the computed S(g) asymptotically converges to the expected value SN for large g: in this case, the entropy function correctly mirrors the equilibrium attained by the neutron population. As L increases by keeping N fixed, spatial clustering strongly affects the neutron population during the power iteration: the neutron population still attains a stationary equilibrium distribution, which is nonetheless quite different from the flat fundamental eigenmode. In particular, a larger fraction of empty cells is observed. The measured entropy S(g) consequently converges to an asymptotic value for large g which is lower than the expected SN and decreases with increasing L. Numerical analysis shows that the ratio between the measured and the asymptotic value of the Shannon entropy scales as 1/L for fixed N.

For the homogeneous reactor benchmark examined here, where SN can be exactly determined, measuring the discrepancy between S(g) and SN at convergence allows in principle the anomalous behavior of the fission source convergence to be detected. In general, however, it is not possible to compute the expected entropy value SN, which means that in the presence of strong spatial clustering assessing the convergence of the Shannon entropy alone may turn out to be insufficient to ensure a proper spatial convergence of the fission sources.
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Figure [HC2] Homogeneous cube reactor. Distribution of fission sites during Monte Carlo power iteration as a function of generations g, for three different initial population sizes N and fixed L = 400 cm. The guess source at g = 0 consists of N neutrons located at the center of the cube. Power iteration is run for 1000 generations. Top: N = 105; center: N = 104; bottom: N = 103.

We have carried a similar analysis for the power iteration by varying the number N of initial neutrons per generation at fixed reactor size L. The results are displayed in Fig. [HC2]. The pattern followed by the neutron population during convergence is similar to that discussed in the analysis carried out above. When the neutron density is high (i.e., N is large for a given L), the fission sites converge to a spatial equilibrium with neutrons homogeneously distributed over the whole volume, with mild fluctuations mostly due to scattering. As N decreases, spatial fluctuations become more apparent, and for even smaller populations neutron clustering eventually sets in. On the basis of the argument discussed above, fluctuations due to correlations are expected to increase for decreasing population size N when keeping L constant, which is coherent with our numerical findings.

The behavior of the measured Shannon entropy S(g) for the configurations presented in Fig. [HC2] is displayed in Fig. [HC3]. The expected entropy value SN depends on the number of particles per generation, whereas the ideal asymptotic entropy value is unchanged and reads S = 9. The number m of generations taken by the neutron population to achieve spatial convergence starting from the point source is again m = L2 / l2, with l2 = 190 cm2 and L = 400 cm, which yields m = 830, independently of the number of simulated neutrons. This is consistent with the number of generations taken by the measured entropy S(g) to attain convergence, as shown in Fig. [HC3].
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Figure [HC3] Homogeneous cube reactor. The behavior of the measured Shannon entropy S(g) during Monte Carlo power iteration as a function of generations g, for different initial population sizes N and fixed L = 400 cm. The guess source at g = 0 consists of N neutrons located at the center of the cube. Power iteration is run for 1000 generations. Upper red curve: N = 105; central green curve: N = 104; lower blue curve: N = 103. The dashed lines represent the expected entropy value SN as in Eq. (5) (red: N = 105, green: N = 104 and blue: N = 103, respectively), and the solid black line is the ideal expected entropy S = 9 for an infinite number of particles per generation.

When the number of initial neutrons N is sufficiently large, the Shannon entropy converges to an asymptotic value that is very close to SN. As the relevance of the spatial clustering increases for decreasing N, the fraction of empty cells at equilibrium increases, and the asymptotic value of S(g) attained at convergence becomes progressively lower than SN. Numerical analysis shows that the ratio between the measured and expected entropy scales as 1/N. Similarly as observed above, the Shannon entropy may thus become ineffective in diagnosing fission source convergence in the presence of spatial clustering.

One might wonder whether the results discussed in this Section are specific to exactly critical configurations (i.e., to having chosen keff = 1). Actually, this is not the case. We have performed several other Monte Carlo power iteration simulations for super or sub-critical reactors by varying the system parameters, and the outcomes are qualitatively similar to those presented here. Finally, the behavior of the entropy function with respect to the mesh number B is presented in Fig. [HC4]. The convergence to the asymptotic value SN for any fixed N decreases for increasing B, which is clearly understood on physical grounds. Indeed, when the number of mesh B is larger, the number of particles N required to smooth out the effects of correlations in each spatial bin must be also larger.
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Figure [HC4] Homogeneous cube reactor for the benchmark problem. The behavior of the measured Shannon entropy S(g) during Monte Carlo power iteration as a function of generations g, for different mesh number B, and fixed L = 400 cm. The guess source at g = 0 consists of N neutrons located at the center of the cube. Power iteration is run for 2.104 generations. Upper red curves: B = 16 x 16 x 16; central green curves: B = 8 x 8 x 8; lower blue curve: B = 4 x 4 x 4. For any fixed B, N is progressively increased, i.e., N = 5.103; N = 104; N = 5.104; N = 105. For reference, the corresponding theoretical entropy values S are displayed as solid lines.

C. Beyond entropy: extracting information from spatial moments

The main drawback of the entropy function as a tool for the statistical analysis of Monte Carlo power iteration is that the spatial fluctuations of the neutron population are somehow averaged out by the sum over all cells in Eq. (1): an asymptotic convergence can be ultimately attained even if neutrons are subject to strong (but statistically stationary in space) patchiness. Clustering effects will then go undetected when using the standard definition of S(g) during power iteration, unless the theoretical value SN is known in advance, so that the ratio S(g) / SN can be computed. Generally speaking, this is however not possible but for the simplest reactor configurations, such as the homogeneous reactor benchmark considered above.

In order to explicitly include the effects of spatial correlations in our statistical analysis, a convenient choice consists in generalizing the entropy function defined in Eq. (1) as follows:
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where L. are the Legendre polynomials (other basis sets could also be used), and  is the x-coordinate (j  is the y-coordinate, and k  is the z-coordinate, respectively) of the center of the cell (i, j, k), normalized to the interval [-1; 1]. For polynomials of order 0, we recover the regular Shannon entropy function
For S1,0,0(g) we obtain the first spatial moment of the entropy function along the x direction (ane the same holds for the other directions, respectively).

By construction, the generalized entropy function Su,v,w(g) is better suited than S(g) in detecting spatial fluctuations during the Monte Carlo power iteration. In order to illustrate our argument, let us revisit the homogeneous reactor benchmark, with a fixed number of meshes B = 512. The behavior of S1,0,0(g) for the reactor configurations obtained by keeping the number of neutrons N fixed and varying the box size L is illustrated in Fig. [HC5] (top). The first spatial moment of the entropy along the x direction is expected to be zero due to the symmetry of neutron distribution. Since the source for the power iteration is initially placed at the center of the box, there is no appreciable convergence
phase for S1,0,0(g), as opposed to S(g).
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Figure [HC5] Homogeneous reactor benchmark. Monte Carlo power iteration as a function of generations g, for three different reactor sizes L and fixed number N of neutrons per generation. The guess source at g . 0 consists of N . 104 neutrons located at the center of the cube. Power iteration is run for 1000 generations. Top. The behavior of the generalized Shannon entropy S100(g). Red curve: L = 100 cm; green curve: L = 200 cm; blue curve: L = 400 cm. Bottom. The behavior of the center of mass x_com(g). Red curve: L = 100 cm; green curve: L = 200 cm; blue curve: L = 400 cm.


Fluctuations of S1,0,0(g) around zero clearly mirror the spatial correlations: as L increases correlations become stronger and the fluctuations of S1,0,0(g) become wilder. A similar behavior is found when decreasing the number N of simulated neutrons per generations at fixed reactor size L, as shown in Fig. [HC5] (top). When N is large, the S1,0,0(g) is again close to zero, and the fluctuations increase by decreasing N. For symmetry reasons, the results for S0,1,0(g) and S0,0,1(g)  are (statistically) identical to those obtained for S1,0,0(g) and will thus not be shown here.

A second, and perhaps more intuitive, approach to the analysis of spatial fluctuations during power iteration consists in computing the center of mass rcom.g. of the neutrons as a function of generations g, as recently suggested for instance by Wenner and Haghighat (2007, 2008). To be more precise, for a collection of N particles having coordinates

[image: ]

at the fission sites, the center of mass is defined as

[image: ]							(7)

where ri is the vector of components

[image: ]								(8)
				
and wi are the statistical weights of the neutrons. The components of the center of mass along each direction are defined as

[image: ]		(9)

Observe that by construction the center of mass r_com(g) does not depend on the number of spatial meshes.

The analysis of the center of mass estimator for the reactor configurations obtained by keeping the number of neutrons N fixed and varying the box size L is illustrated in Fig. [HC5] (bottom), where we display x_com(g). Since the source for the power iteration is initially placed at the center of the box, there is no appreciable convergence phase for x_com(g). The evolution of x_com(g) clearly mirrors the spatial fluctuations of the neutron population: when L is small, and the population is uniformly distributed within the box, x_com(g) fluctuates around the symmetry center (here, x = y = z = 0), and the fluctuations are rather mild. As L increases, the effects of spatial correlations becomes stronger, and the evolution of x_com(g) becomes increasingly erratic.

The qualitative behavior of x_com(g) is closely related to that of S1,0,0(g), apart from the normalizing factor that is imposed by construction in the Legendre polynomials.

D. Spatial correlation function

In (Dumonteil, 2014) it is proposed to use a modified version of the pair correlation function as a diagnostic tool for spatial correlation / source convergence issues. This estimated pair correlation function G(r) takes the form

[image: Macintosh HD:Users:ericdumonteil:Desktop:Capture d’écran 2017-05-30 à 17.38.01.png]
where (x, n) stands for the neutron flux at spatial mesh position x at cycle n; , and brackets denote average over mesh positions. The quantity appearing at the denominator of this equation is the variance of the neutron flux with respect to the spatial coordinate. As can be seen on Fig. [PF], this estimator used during the simulation of the UO2 pin-cell reproduces very well the prediction of the spatial correlation function for an infinite medium. Its main drawback is that in the case of complex geometries, natural structure appears in the spatial correlation function that are hard to separate from the clustering effect.



[image: ]

Figure [PF] Left plot: the pair correlation function g(r) displayed as a function of the spatial coordinate r for an unbounded three-dimensional system. The function displays a peak at r = 0, whose amplitude grows with time and asymptotically saturates to a constant value. Right plot: the empirical pair function G(r) for the PWR pin-cell simulation with L = 400 cm, displayed as a function of the mesh distance i and the cycle number n. The behavior of the empirical correlation function closely resembles that of the pair correlation function of branching Brownian motion.
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	Main conclusions
	Stochastic modeling to interpret the observations on biases

· Adapting the simulation parameters, particularely N

· Diagnosing correlation problems with ad-hoc metrics, particularly 2nd order spatial quantities







[bookmark: _Toc362260419]Final conclusion & user guidance for the study of local tallies in loosely coupled systems
This report was focussed on the biases proper to the estimation of local tallies in Monte Carlo criticality calculations. Using a set of benchmark representative of criticality-safety typical user case (GBC 32 canister model) and of a reactor physics test case (CRC model), we have shown that common features were emerging while trying to quantify these biases on local tallies, in particular:
· The absolute value of the bias on the keff is proportional to and its sign is negative independently of the value of the keff
· The absolute value of the bias on local tallies is proportional to and its sign depends on the position: tallies over-estimated close to leaking boundaries and are under-estimated far from leaking boundaries
· The under-sampling bias seems to flatten the flux spatial distribution
· The bias on the estimation of uncertainties on local tallies is always positive: uncertainties can only be under-estimated
· Spatial correlations and neutron clustering seem to play a key role in the understanding of biases on local tallies. In particular, an interpretative frame has been proposed to explain biases on local tallies. It involves a combination of spatial correlations (neutron clustering, see Appendix C) and leakage boundary conditions
We have also presented different diagnostic tools and metrics to diagnose under-sampling problems, some of these metrics aiming at tackling the challenges of detecting the spatial correlations.

Finally, more importantly for the user is the ability to set the simulations parameters in such a way that the required CPU time is minimized while ensuring that the bias on local tallies is kept to a minimum and that the uncertainty is estimated with the better accuracy possible. Providing such an information to the user is of utmost importance, but is an extremely complicated task, as the proper adjustment of the simulation parameters (in particular the number of cycles, and the number of neutrons per cycles) depends strongly on the configuration studied: for example the dimensions of the system and its compositions affect its dominance ration which, when close to unity, requires very high statistics of neutrons to be simulated. As an example, Figure [CPU] has been obtained by running many simulations of the pin-cell test case discussed previously. This figure shows the statistical uncertainty on the mean estimated flux in a cell at the extremity of the pin-cell (left plot) and at the center of the pin-cell (right plot), as a function of the number of neutrons per cycle (x-axis) and of the number of cycles (y-axis). It can be used by Monte Carlo criticality codes users to balance the number of neutrons per generation and the number of generation, by considering a specific example – fuel cell.  In particular, the following facts are important to have in mind:
· to avoid biases on local tallies, the number of neutrons per generation has to be bigger than 10^3
· to avoid a strong under-estimation of the statistical uncertainty on local tallies, the number of generation has to be bigger than 10^4
· if these criteria are met, the iso-cpu lines indicate that it is more efficient to increase the number of neutrons per generation than to increase the number of generations

Being able to automatize such an adjustment of the simulation parameters and to setup efficient diagnostic tool to balance the number of generations and the number of neutrons per generation would be a consequent improvement for practionners, that could be tackle in a future mandate of the expert group.

[image: Macintosh HD:Users:ericdumonteil:Desktop:Capture d’écran 2017-07-21 à 16.00.22.png]
Figure [CPU] Statistical uncertainty (%) on the mean estimated flux in a cell at the extremity (left plot) and at the center (right plot) of the pin-cell test case discussed below, as a function of the number of neutrons per cycle (x-axis) and of the number of cycles (y-axis). The thin black lines are iso-uncertainty lines (amongst those, the thick black lines and the thick red line are associated to (respectively) 10%, 5% and 1% of uncertainty). The white lines are iso-cpu lines. The black labels indicate the value of the bias on the estimation of statistical uncertainties.
 


All results are available on the EGAMCT working area : https://www.oecd-nea.org/science/wpncs/egamct/. 
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