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Motivation

» Participate in WPNCS EGUACSA Phase V, now WPNCS SG-2
 Blind applications used to study bias and bias uncertainty calculations

 Use new MCNP6 / Whisper-1.1 features
« MCNP6 computes nuclear data sensitivity profiles

* Whisper-1.1 contains:
» Catalogue of benchmarks with sensitivity profiles
* Nuclear data covariance matrices
» Ability to calculate correlations between application and benchmarks
* Use of extreme value theory to compute bias and bias uncertainty
» Estimate of margin of subcriticality using generalized linear-least squares method

« Machine learning is current “hot topic”
« Summer student (P. Grechanuk) very interested in this...

* Look at various methods to calculate bias for blind benchmark study



Background
Upper Subcritical Limit

« To consider a simulated system subcritical, the computed k_; must be
less than the Upper Subcritical Limit (USL):

Kcalc < USL

USL = 1 + (Bias) - (Bias uncertainty) - MOS

MOS = MOS,,,. + MOS__,, + MOS

application

* The bias and bias uncertainty are at some confidence level, typically
95% or 99%.

» These confidence intervals may be derived from a normal distribution, but
the normality of the bias data must be justified.

 Alternatively, the confidence intervals can be set using non-parametric
methods.



Background

MCNPG6 / Whisper (1)

* The sensitivity coefficient is the ratio of relative change in k-effective to
relative change in a system parameter:

Caklk Yz, =S, - kR )y)

Sk,x - dX/X - <W1,k—1FW>

* S «(E) is the sensitivity profile, that includes all isotopes, reactions, &
energies for a system:
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« MCNP6 & Scale/Tsunami Monte Carlo can use the Iterated Fission
Probability method to compute adjoint-weighted integrals for the
sensitivity profiles

etc.
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Background
MCNPG6 / Whisper (2)

Application
.., MCNPG6 or Scale/Tsunami
Monte Carlo

Criticality Calculation

ZH

Nuclear
Cross-section
Data

Application
Sensitivity Profile

Nuclear
Cross-section
Covariance

Whisper or Tsurfer

SU-baS_ed Pattern matching —
Analysis

application sensitivity profile
—_— / vs catalog
l Select similar experiments

E A Eu = L

EAmt 8 - ? Statistical analysis to
Catalog of sensitivity UsL determine bias & uncertainty
profiles for 1000s of Upper Subcritical Limit & extra margin

experiments for criticality safety analysis




Background
MCNPG6 / Whisper (3)

 Whisper
 Statistical analysis code to determine baseline USLs

» Uses sensitivity profiles from continuous-energy MCNPG6
* Uses covariance data for nuclear cross-sections

« Using Whisper

Run MCNPG6 for an Application, & get Application sensitivity profile, S,
Run Whisper:

(1) Automated, physics-based selection of benchmarks that are
neutronically similar to the application, ranked & weighted
 Compare Application S, to each of the Benchmark sensitivities Sg;)

* Select most-similar benchmarks (highest S,-Sg;) correlation coefficients)

(2) Bias + bias uncertainty from Extreme Value Theory

(3) Margin for nuclear data uncertainty estimated by GLLS method
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Bias Prediction Methods

« Extreme Value Theory in Whisper-1.1
 Statistical analysis to estimate calculational margin (CM)
« Based on most-similar benchmarks selected

* Generalized Linear-Least Squares Method in Whisper-1.1
« Use benchmark sensitivities & cross-section covariance data
» Estimate the MOS for nuclear data uncertainties
« Based on entire catalogue of benchmarks

« Machine Learning using Decision Trees (not in Whisper-1.1)
« Use benchmark sensitivities (no nuclear data covariance data used)
» Regression used to predict target function
« Based on entire catalogue of benchmarks



Los Alamos National Laboratory

Bias Prediction Methods
Extreme Value Theory (1)

 Whisper uses a nonparametric statistical approach to determining the
calculational margin (bias + bias uncertainty)

* Does not rely on assumption that (k
the set of benchmarks

Koencn) 1S Normally distributed for

calc —

« Based on Extreme Value Theory (EVT)
« The addition of less-relevant benchmarks cannot reduce the calculational margin
 lrrelevant benchmarks (i.e., low c¢,) will not non-conservatively affect results

» Accounting for weighting avoids overly conservative calculational margin

« Whisper uses EVT to find the value of a calculational margin that
bounds the worst-case bias to some probability of a weighted
population

* Notes:

» There is the fundamental assumption that for a single benchmark, the bias for that benchmark is
normally distributed, according to the experimental uncertainty & Monte Carlo statistics

» There is no assumption of normality across the collection of benchmarks, however.



Bias Prediction Methods

Extreme Value Theory (2)

— 2 = 2 2
* Let BJ - kcaIcJ - kbenchJ and o J = 0%penchJ o calc J

» For convenience, the X, below are opposite in sign to [3,

* For a set of N benchmarks, let X, be a random variable normally
distributed about (3; with uncertainty o,. The cumulative distribution
function (CDF) for X, is - -

—_ - ¢ y+ﬁ_, 2 _ 1 X+ﬁ_[
FJ(x)_Prob(XJ < X)= éﬂjiexp[—%(G—J)}d =3 1+ erf

2
201

* Note: +[,, due to opposite sign

» Let the random variable X be the maximum (opposite-signed) bias for
the benchmark collection:

X = max{ X, ..., Xy }

 The cumulative distribution function (CDF) for X is

F(x) = Prob(X < x) = lﬂ[Fj(x)
J=1




Bias Prediction Methods

Extreme Value Theory (3)
 When benchmarks are weighted, the following form is used for F j(x)
w X+
F(x) =(0-w) + —J|1+erf ,
2 2
20,

 For all benchmarks J =1, ..., N, Whisper computes
« Benchmark weight, w,
* Bias, B,
« Bias uncertainty, o,

N
+ Those quantities & the weighted F (x) determine F(x): F(x) = H FJ(X)
J=1
« Whisper determines the calculational margin (bias + bias uncertainty)
by numerically solving:

F(CM) = .99 (.99 is default, user opt)

Note: CM is the calculational margin that bounds the worst-case benchmark bias &

bias uncertainti with irobabiliti .99 idefaulti



Bias Prediction Methods

Extreme Value Theory (4)

- Bias & bias uncertainty
USL = 1 - CM - MOS
= 1 + bias - bias-uncertainty - A consery - MOS
« ANSI/ANS-8.24:

"Individual elements (e.g., bias and bias uncertainty) of the calculational margin need not
be computed separately. Methods may be used that combine the elements into the
calculational margin."

* Whisper computes CM by numerically solving F(CM) =

 Whisper computes bias & bias uncertainty numerically as:

bias = —on-f(x)dx = —J‘xF(x)Jiw fﬁx;
o,... = CM + bias

Note: If the bias is non-conservative (positive), then the CM is adjusted so that no
credit is taken for non-conservative bias (CM = CM + bias)




Bias Prediction Methods

GLLS Method (1)

« Goal is to minimize discrepancies between simulated and measured k
while constrained by the nuclear data covariance matrices

x> =AkTC L Ak+ Ao’ C 1Ac

Ak = Discrepancy between posterior (adjusted) and measured K

Cnm = Covariance matrix of measured
benchmarks > oI
0.000075
A o = Difference between prior and s 0.000050
posterior nuclear data , 0.000025
C,, = Covariance matrix of 5 ,, 0.000000
as]

nuclear data (previous slide) ~0.000025

—0.000050

-
v ~0.000075

—0.000100

I Benchmarks




Bias Prediction Methods
GLLS Method (2)

relative uncertainty
0.50
« With the sensitivity profiles defining 0.25 1
how each benchmark k. + changes with 000 L~ = e ]
clastic 1nclastic 1SSs10n n,zn n,gamma total nu 1ission chi
respect to the nuclear data, ——
relative covariance
fission chi 1
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« Linear error propagation, “sandwich” |
T —0.020 —0.015 —0.010 —0.005 0.000 0.005 0.010 0.015 0.020
Cxk = SC,,S

rule,




Bias Prediction Methods
GLLS Method (3)

« Covariance of the prior discrepancies

Cdd = Cxk + Coim

* The final results of the GLLS minimization process, improved
agreement between simulation and measurement

Ak = CymCgy 1d

 Reduced nuclear data induced uncertainties in benchmarks, used to
compute the portion of the margin of subcriticality from to nuclear data

. =8SC. S’

* Nuclear data and uncertainty adjustments,

T ~— T ~—
Ao =—-C,,S" C;d C!,=C,o —CyssS C13SC,,
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Bias Prediction Methods
Machine Learning (1)

* Machine learning algorithms can be used to find “hidden” patterns in
data that are not necessarily obvious

® Can be used to classify data \ 3-Class classification (k = 15, weights = ‘uniform')
- In this case, we want to “predict” 45
something: given x, what is f(x) . .0
< ' e L] < L
| o..ii:.. 9‘}.' '.'o.
- 3.0 4 s ﬂ-on§§:§§g lg': .l...:
15 . e 2.5 B g«gg e o g
10 151
,“ -".' : . Image obtained from
e & | https: / /sebastianraschka.com/faq/docs/evaluate-a-
' model.html
20 -10 10 20 30 40 SIO ﬁ.[}

Image obtained from Wikipedia's Linear Regression page

« Some nomenclature: features = x, labels = f

* The objective is to predict bias
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Bias Prediction Methods
Machine Learning (2)

U-238: total cross-section sensitivity
OECD/NEA UACSA Benchmark Phase IIl.1

 Prediction of Bias using Sensitivity Profiles o TS
» Sensitivity profiles are readily available, S,-,j

» Bias known for Whisper benchmarks,

Bi = kcalci _ kbenchi
- Goal: predict bias, B(S;))

Keft Sensitivity / Lethargy

-0.03

 Decision Trees
* A tree-like model of decisions based on the features
 All features are considered to split the data

« Splits are chosen to maximize a cost function . e
(.e. mean-square error) - o - .

In 3™ class?

« More important features are found near the top | sl o el .

20%_ : . 939; Survival Rate
Image obtained from

° Random Forest (random SUbset Of featureS) https://algobeans.com /2016 /07 /27 /decision-trees-tutorial

Male?

Yes! ‘ No

« Adaboost (iteratively improve poor predictors)
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Generalized Results (1)

Use Whisper benchmark suite for which the bias is known

Whisper results
 Remove each benchmark and use as application
» Bias from extreme value theory

GLLSM results
* Apply method constrained by covariance data
 Bias = prior — posterior K

Machine Learning results
 Train bias function using sensitivity profiles

. Bias = B(S)

J
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Generalized Results (2)

Bias Accuracy Metrics

Comparison of Whisper Bias vs. Real Bias

0.03 - : \’jveha:lss;arsmas .5 .’ 3 Model RMSE MAE
E
002 s ‘ Whisper 0.01329  0.00906
001 GLLSM 0.00959  0.00645
oo R. Forest (I)  0.00499  0.00350
0014 AdaBoost (I)  0.00498  0.00352
002 R. Forest (D)  0.00572  0.00397
| Adaboost (D)  0.00537  0.00374

0014 ¢

e Real Bias b e Real Bias
0.03 - :‘: e GLLSM Bias 0.03 1 s e Adaboost Bias
o o
' ° Y [] 3
0.02 A s 0.02 -
o0 J . g :3:.
oN H S, ° H 'YL
0011 %, % 8, 309%
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Comparison of GLLSM Bias vs. Real Bias

]
L)

Comparison of Adaboost Bias vs. Real Bias

{ s e ' é . ;
0.00 A 0.00 - | ‘
o ' U S % .‘° .
—0.01 - —0.01 - oo 8 ’
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Application Toward SG-2 Blind Benchmark Study (1)

 Whisper-1.1 Results

* For all cases
+ Bias & Bias Unc. ~1%
« MOS,p ~0.15% (1-sigma)
* max(c,) 0.79-0.92

* best matches generally
PCM-2, MCI-5, PCI-1

 Does not include BFS
benchmarks

Case Bias Bias Unc. | MOSyp | max(ck)
C01 | 0.00911 0.01190 0.00129 | 0.87696
C02 | 0.01050 0.01116 0.00134 | 0.83712
C03 | 0.00966 | 0.01097 0.00150 | 0.86452
C04 | 0.00912 | 0.01177 0.00142 | 0.86187
C05 | 0.01049 0.01116 0.00137 | 0.82235
C06 | 0.00897 0.01100 0.00165 | 0.92323
C07 | 0.00919 | 0.01204 0.00111 | 0.90301
C08 | 0.01044 0.01122 0.00128 | 0.88176
C09 | 0.00962 | 0.01105 0.00158 | 0.89738
C10 | 0.00806 | 0.01136 0.00119 | 0.86025
C11 | 0.00996 | 0.01112 0.00133 | 0.79246
C12 | 0.00894 | 0.01099 0.00153 | 0.87734
C13 | 0.00946 | 0.01185 0.00138 | 0.90423
C14 | 0.01054 | 0.01111 0.00132 | 0.85682
C15 | 0.00970 | 0.01085 0.00141 | 0.87708
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Application Toward SG-2 Blind Benchmark Study (2)

« Comparison of Bias Estimates

 For most cases
« EVT Bias > GLLSM Bias
* Additional conservatism from EVT?

« Remember EVT calculates CM, bias
& bias unc. inferred from CM

 For all cases
« EVT bias > ML bias
e GLLSM bias > ML bias

 GLLSM and ML bias
uncertainties not reported /
computed

 Does not include BFS
benchmarks

Case EVT GLLSM ML

C01 | 0.00911 | 0.01124 | 0.00763
C02 | 0.01050 | 0.00828 | 0.00583
C03 | 0.00966 | 0.00741 | 0.00544
C04 | 0.00912 | 0.01152 | 0.00785
C05 | 0.01049 | 0.00875 | 0.00612
C06 | 0.00897 | 0.00735 | 0.00537
CO7 | 0.00919 | 0.00885 | 0.00682
C08 | 0.01044 | 0.00705 | 0.00589
C09 | 0.00962 | 0.00640 | 0.00553
C10 | 0.00806 | 0.01161 | 0.00770
C11 | 0.00996 | 0.00836 | 0.00611
C12 | 0.00894 | 0.00752 | 0.00579
C13 | 0.00946 | 0.01150 | 0.00766
C14 | 0.01054 | 0.00854 | 0.00571
C15 | 0.00970 | 0.00713 | 0.00489
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Conclusions & Future Work

* Investigated the Whisper-1.1 EVT and GLLSM methods
 Proposed a new use of ML methods, attempting to best estimate bias

* For the ML methods, used nuclear data sensitivity profiles as features
[x] to predict bias [f(x)]

* Generalized results for Whisper-1.1 benchmarks suggest the ML
algorithms perform most accurately compared to EVT and GLLSM in
predicting bias

* Need to predict bias of BFS benchmarks to observe how well these
methods perform for more relevant benchmarks

* Investigate adding BFS benchmarks to Whisper-1.1 to better cover
these blind application cases and re-train ML algorithms




Los Alamos National Laboratory

Questions?

| 23
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Extra Slides (1)

 From the machine learning methods, feature importances can be used
to identify what nuclear data is cause for poor bias predictions

Thermal (0 - 0.625 ev)

Intermediate (1.0 ev - 0.1 Mev)

Fast (0.4 Mev - 20 Mev)

6000.80c n,gamma, 0.014562
92233.80c total nu, 0.011437
92233.80c n,gamma, 0.010641
92234.80c n,gamma, 0.009479
1001.80¢ n,gamma, 0.009069
poly.20t inelastic, 0.008879

be.20t elastic, 0.008204
94239.80c n,gamma, 0.007522
94239.80c fission, 0.007427
9019.80¢ n,gamma, 0.007201

92233.80c n,gamma, 0.018457
92233.80c fission, 0.015724
92233.80c total nu, 0.012844
92234.80c n,gamma, 0.011945
94239.80c n,gamma, 0.011687
6000.80c n,gamma, 0.008924
94239.80c total nu, 0.008325
94239.80c fission, 0.008208
6000.80c elastic, 0.007817
92232.80c total nu, 0.006668

92233.80c fission, 0.015264
92233.80c inelastic, 0.013543
92233.80c n,gamma, 0.012739
92233.80c total nu, 0.012644
9019.80c inelastic, 0.010355
6000.80c¢ elastic, 0.009997
92233.80c fission chi, 0.008758
92234.80c total nu, 0.008494
92234.80c fission, 0.008008
1001.80c¢ elastic, 0.007938



Extra Slides (2)

 From the machine learning methods, the comparison between the
computed feature importances and the nuclear data uncertainties is
very suggestive (remember nuclear data covariances are not used...)

233U uncertainties and importances

Cross Section Uncertainty Cross Section Importance
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