X4Lite2 and progress in EXFOR data automatic renormalization system

Viktor Zerkin

International Atomic Energy Agency, Nuclear Data Section

WPEC SG50, Codes and Database SSG, Web Meeting, 27 September 2021

Contents

I. X4Lite2

- 1. EXFOR relational database in SQLite with data points in JSON
- 2. Difference with EXFOR Relational and X4Lite2
- 3. Retrieval code examples in Python

Concluding remarks

II. Progress in EXFOR data automatic renormalization system

- 1. Renormalization of EXFOR data using new Decay data
- 2. New data types available for automatic renormalization
- 3. Implementation for whole EXFOR database
- 4. Renormalized C5 and C5M
- 5. Usage in Web EXFOR Web retrieval system
- 6. Example of expert's corrections
- 7. Existing EXFOR data correction system vs. SG50 plans Concluding remarks

X4Lite2

- 1. Concept: relational database + data points in JSON fields
- 2. NDS-NNDC EXFOR relational database:
 - 1. extended by 3 tables describing datasets, headers and storing data points:
 - 2. original EXFOR data as they appear in DATA and COMMON sections
 - 3. computational data y, dy, x1, dx1, x2, dx2, etc.
 - 4. ported from MariaDB/MySQL to SQLite
- 3. Translation from MariaDB to SQLite is done automatically by a bash script working ~4 hours and producing a single 4Gb file x4sqlite1.db having 3 new tables:
 - 1. x4data_ds177, 367 rowsdatasets2. x4data_hdr1,424,906 rowsheader3. x4data_dat18,853,364 rowsdata points (data columns: xdat json, cdat json)
- Flexible solution: using single field to store one experimental data point as JSON object, e.g.: DatasetID:10045009, idat:83, original EXFOR data xdat: {"DATA":3.0, "DATA-ERR":10.0, "EN":2.13, "EN-RSL":0.055, "E":1465.0, "COS":0.0, "ANG-ERR":8.0, "E-NRM":846.8} computational data cdat: {"y":0.003, "dy":0.0003, "x1":2.13e+6, "dx1":27500.0, "x2":1.465e+6, "x3":90.0, "dx3":8.0}
- 2. Data from JSON field are accessible using json_extract function, and can be used also in WHERE and ORDER BY of SELECT command

X4Lite2 extension of EXFOR-relational

Main idea of X4Lite2

- No more BLOBs with zipped SUBENT data in the databases are ready for use. Both original EXFOR data and computational data can be retrieved directly from database using only SQL commands.
- End-user does not need EXFOR converters.
- Can be used to build user's applications.

Retrieval code examples in Python #0

Connect to the database, execute SQL command

```
1 import os
2 import sys
3 import sqlite3
4print("---access SQLite database---")
5x4db='x4sqlite1.db'
6try:
      conn=sqlite3.connect('file:'+x4db+'?mode=ro',uri=True)
7
      conn.row_factory=sqlite3.Row
 8
9except sqlite3.Error as error:
      print("___0___sqlite3.connect.Error:\n",error)
10
      sys.exit(1)
11
12 cursor=conn.cursor()
13
14 sql="select Entry,YearRef1,Author1 from ENTRY where Entry like 'F%'"
15 try:
      rows=cursor.execute(sql)
16
17 except Exception as ex:
      print("___1___execute-SQL error: ", ex)
18
      rows=[]
19
20
21ii=0
22 for row in rows:
      Entry=row['Entry']
23
     YearRef1=row[1]
24
     Author1=row[2]
25
      ii+=1
26
27
      print('\t'+str(ii)+') '+str(Entry)+' '+str(YearRef1)+' '+Author1)
28
29 conn.close()
```

Retrieval code examples in Python #1

Retrieve computational data from X4Lite2/MariaDB and plot using Plotly

Retrieval code examples in Python #2

Retrieve data from X4Lite2 + evaluated ENDF data from Web

These python codes are trivial!

Concluding remarks

- EXFOR relational database is extended with data points in JSON;
 X4Lite2 created; project continues
- 2. X4Lite2 database can be used as it is without EXFOR parsers
- 3. After discussions, tests and decision regular distribution of X4Lite2 can be organized

Progress in EXFOR data automatic renormalization system

- 1. Renormalization of EXFOR data using new Decay data
 - "AR" 511 keV annihilation decay data (intensity)
 - "DR" gamma line intensity
 - EXFOR keywords: DECAY-DATA and DECAY-MON
 - Data renormalized to the current ENSDF data thanks to M.Verpelli
- 2. New data types available for automatic renormalization
 - "SIG", "DA", "DE", "DAE", "FY"
- 3. Implementation for whole EXFOR database
 - Now automatic renormalization includes 3 types of flagged corrections: MONITOR [0], DECAY-DATA [1], DECAY-MON [2]
 - Datasets with automatic corrections: 17,025 (9.4% of total 181,398)
- 4. Renormalized C5 and C5M
 - x4toc5 extended by option for automatic renormalization (-ren:mon,decay)
- 5. Usage in Web EXFOR Web retrieval system
 - Check-box for automatic renormalization for "Monitor-xs" and "Decay-data"

Automatic vs. expert's correction

A 2021-09-21 10:01:17, 3	k4auto, V.Zerkin	
L3597002 x4u:19950217	#1995,Ghorai #Pts:4	
<pre>#[0]#Monitor xs-data</pre>		x4auto 2021
#[0]#Reaction: 30-ZN-64	(N,P)29-CU-64,,SIG	Λτάμιο, 202 Ι
#[0]#Monitor: 13-AL-27	(N,A)11-NA-24,,SIG	
m0: [EN, MONIT, MONIT-ERR]	; #[0]#old monitor(energy)	
m1: recom\$al27na;	<pre>#[0]#new monitor(energy)</pre>	
dy=dy/y;	<pre>#to rel. uncertainties</pre>	
y=y/m0*m1;	<pre>#[0]#renormalizing CS</pre>	
dy=(dy**2-dm0**2+dm1**2)	**0.5; #[0]#replace monitor unce	rtainties
#[1] #Reaction decay-o	lata	
#[1]#REACTION (30-ZN-0	64 (N,P)29-CU-64,,SIG)	
#[1]#DECAY-DATA (29-CU-0	54,12.7HR,AR,511.,0.386) #Ix_old=	0.386
a1=0.386/0.352;	#[1]#DECAY-DATA: correction to	new 511 keV gamma-yield per decay Cu-64 Ix_new=0.352
y=y*a1;	#[1]#Renorm.factor: a1=1.09659	09
#[2] #Monitor decay-da	ata	
#[2]#MONITOR (13-AL-2	27 (N,A) 11-NA-24, ,SIG)	
#[2]#DECAY-MON (11-NA-2	24,15.02HR,DG,1369.,1.00) #Im_old	=1.0
a2=0.999936/1.0;	<pre>#[2]#DECAY-MON: correction to</pre>	new 1368.626 keV gamma-yield per decay Na-24 Im_new=0.999936
y=y*a2;	#[2]#Renorm.factor: a2=0.99993	6
dy=dy*y;	<pre>#to abs. uncertainties</pre>	

\$C 2011-05-16, K.Zolotarev 2011, Zn64(n,p)Cu64

+0 2022 00 20, 10202	
13597002	#1994 S.K.Ghorai+ K Zolotarov 2011
a0=0.386/0.348;	#correction to new 511 keV gamma-yield per decay Cu-64
a1=0.999936/1.0;	#correction to new 1368 keV gamma-yield per decay Na24
a2=0.84351;	#renorm. factor to the preliminary evaluated integral of cs
	#in the neutron energy interval 14.2-16.2 MeV.
a3=a0*a1*a2;	#total energy independent correction factor
c2=0.0115	#added error in 511 keV gamma-yield per decay Cu-64 - 1.15%
c3=0.02	#added error in remorm. factor - 2%
<pre>m0: [en, monit];</pre>	#old cs for Al27(n,a)Na24 monitor reaction
<pre>m2: [en, monit-err];</pre>	#abs. error in old cs for Al27(n,a) monitor reaction
c0=m2/m0;	<pre>#rel. error in old cs for Al27(n,a) monitor reaction</pre>
<pre>m1: rrdf10 \$ al27na;</pre>	<pre>#new cs for Al27(n,a)Na24 monitor reaction</pre>
c1=dm1/m1;	<pre>#relative error in new cs for Al27(n,a) monitor reaction</pre>
dy=dy/y;	<pre>#relative error in original cs for Zn64(n,p)Cu64 reaction</pre>
fc=m1/m0*a3;	#total correction factor
y=y*fc;	#correction exp. cs
dy=dy^2-c0^2+c1^2+c2	2 ² +c3 ² ; #determination the quadrature of new total error
$dy=dy^0.5*y;$	#determination the absolute value of new total error

Example of expert's corrections: ²³⁹Pu/²³⁵U(n,f)

D.Neudecker; SG50, 2021-06-21

I take ²³⁹Pu/²³⁵U(n,f) cross sections by Tovesson that were already highlighted as questionable by Standards.

- Tovesson et al. and Shcherbakov et al. data raised questions in the Neutron Standards evaluation -> Standards rejected Tovesson data above 13 MeV -> nice example for layer 3.
- Also some information was lost from literature when translated into EXFOR format -> nice example for layer 1.
- This is neither a criticism of experimentalists nor compilers! Both have a hard job.

 \otimes

Tasks:

- 1. Remove Tovesson's data above 13MeV
- 2. Renormalize Scherbakov's data and include missing uncertainties

2

3

3. Store and share this information between evaluators

Solution in EXFOR Retrieval system:

\$C 2021-09-24, V.Zerkin for SG50 2021, 239Pu(n,f)sig/235U(n,f)sig 142710031 x4u:20201215 #2010,F.Tovesson #Reaction: (94-PU-239(N,F),,SIG) / (92-U-235(N,F),,SIG) e:13e6 *; del; #data above 13 MeV rejected in Neutron Standard evaluation (2017) 41455005 x4u:20170724 #2002,0.Shcherbakov ((94-PU-239(N,F), SIG)/(92-U-235(N,F), SIG))# REACTION # MONITOR ((94-PU-239(N,F), SIG)/(92-U-235(N,F), SIG))# MONIT-REF (,,3,JENDL-3.2,,1994) # COMMENT Of Authors. The fission cross-section ratio normalization has been done in the 1.75-4.0 MeV energy interval using data of JENDL-3.2. dy=dy/y;#convert abs. uncertainty in cs-ratio to rel. uncertainty #used ratio normalization factor (using data of JENDL-3.2), E:1.75-4.0 MeV a0=1.535; c0=1.668/100;#1.535 +-1.668% (this uncertainty is not included to error analys) a1=1.5393; #ratio normalization factor (using data of ENDF/B-VIII.0), E:1.75-4.0 MeV c1=2.82/100;#1.5393 +-2.82% (uncertainty should be added) fc=a0/a1;#total correction factor y=y*fc; #correction exp. cs dy=dy**2+c1**2; #calc. new quadrature of total uncertainty dy=dy**0.5*y;#back to absolute uncertainty

Before correctio

C 2021-09-24, V.Zerkin for SG50 2021, 239Pu(n,f)sig/235U(n,f)sig 142710031 x4u:20201215 #2010,F.Tovesson #Reaction: (94-PU-239(N,F),,SIG)/(92-U-235(N,F),,SIG) e:13e6 *; del; #data above 13 MeV rejected in Neutron Standard evaluation (2017) 41455005 x4u:20170724 #2002,0.Shcherbakov ((94-PU-239(N,F),,SIG)/(92-U-235(N,F),,SIG)) ((94-PU-239(N,F),,SIG)/(92-U-235(N,F),,SIG)) (,,3,JENDL-3.2,,1994) The fission cross-section ratio normalization has been done in the 1.75-4.0 MeV energy interval using data of JENDL-3.2. #convert abs. uncertainty in cs-ratio to rel. uncertainty #used ratio normalization factor (using data of JENDL-3.2), E:1.75-4.0 MeV #1.535 +-1.668% (this uncertainty is not included to error analys) #ratio normalization factor (using data of ENDF/B-VIII.0), E:1.75-4.0 MeV #1.5393 +-2.82% (uncertainty should be added) #total correction factor #correction exp. cs dv=dv**2+c1**2; #calc. new guadrature of total uncertainty #back to absolute uncertainty

Corrections protocol

Applied corrections. Datasets: 2

1) EXFOR: #142710031 Ref: F.Tovesson, (10) Corrected Points: 0 Deleted Points: 238 Unchanged Points: 362

2) EXFOR: #41455005 Ref: O.Shcherbakov, (02) Corrected Points: 166 yFactor Ave: 0.997207 yFactor Min: 0.997206 yFactor Max: 0.997207

142710031 X4U:20201215; E:1.3e+7 *; Del;

41455005 X4U:20170724; dY=dY/Y; a0=1.535; c0=1.668/100; a1=1.5393; c1=2.82/100; Fc=a0/a1; Y=Y*Fc; dY=dY^2+c1^2; dY=dY^0.5*Y;

After correction

Data check:

		Y(ratio*10	00)			
-50	En (MeV) =1.773	Y=1541	dY=40.4767	(2.63%)	41455005	O.Shcherbakov,
+50		¥=1536.7	dY=59.221	(3.85%)	41455005	*Fc=0.997207
-51	En (MeV) =1.829	Y=1531	dY=39.9504	(2.61%)	41455005	O.Shcherbakov,
+51		¥=1526.72	d¥=58.6578	(3.84%)	41455005	*Fc=0.997206
-52	En (MeV) =1.887	Y=1491	d¥=38.9867	(2.61%)	41455005	O.Shcherbakov,
+52		Y=1486.84	d¥=57.1796	(3.85%)	41455005	*Fc=0.997207
-53	En (MeV) =1.949	¥=1552	dY=40.7403	(2.63%)	41455005	O.Shcherbakov,
+53		Y=1547.66	dY=59.6265	(3.85%)	41455005	*Fc=0.997206
-154	En (MeV) =83.32	Y=1147	dY=23.0894	(2.01%)	41455005	O.Shcherbakov,
+154		Y=1143.8	d¥=39.63	(3.46%)	41455005	*Fc=0.997207
-155	En (MeV) =88.22	Y=1157	d¥=23.2452	(2.01%)	41455005	O.Shcherbakov,
+155		Y=1153.77	dY=39.9491	(3.46%)	41455005	*Fc=0.997206
-156	En (MeV) = 93.57	Y=1139	d¥=22.965	(2.02%)	41455005	O.Shcherbakov,
+156		Y=1135.82	dY=39.3748	(3.47%)	41455005	*Fc=0.997206
-157	En (MeV) =99.46	Y=1146	dY=22.6142	(1.97%)	41455005	O.Shcherbakov,
+157		Y=1142.8	dY=39.3335	(3.44%)	41455005	*Fc=0.997206

Concluding remarks

- 1. The development of existing EXFOR database and correction system continues
- New ways of the data distribution and methods of access for new users are being worked out
- 3. Is there a need to coordinate our development plans?

Thank you.

Citing of the materials of this presentation should be done with proper acknowledgement of the IAEA and author