EXFOR relational database. X4Lite. Accessing data in C5, XML, JSON.

Translation data from EXFOR relational to JSON-X4DB

Viktor Zerkin International Atomic Energy Agency, Nuclear Data Section

Excerpt from the part-II of "Developing an automatically readable, comprehensive and curated experimental reaction database"WPEC Subgroup-50, 1-st Meeting, WebEx, 14-15 September 2020

WPEC SG50, Codes and Database SSG, Web Meeting, 06 April 2021

Contents

Part II. EXFOR relational database. X4Lite. Accessing data in C5, XML, JSON

- 1. Data formats overview: X4+, XML, StdOut, C5, JSON; concept of Dataset; Dataset vs. ENTRY/SUBENT/Pointer
- 2. EXFOR database: structure, content, updates
- 3. X4Lite: database, retrieval and converter codes; pro and con Concluding remarks

Part III. Translation data from EXFOR relational to JSON-X4DB

- 1. Using database schema for creating JSON files
- 2. Relational database with JSON fields (hybrid implementation)
- 3. Universal flexible translation EXFOR Relational to JSON: automatic and configurable Java-code

Concluding remarks

Part II.

EXFOR relational database. X4Lite. Accessing data in C5, XML, JSON.

Excerpt from

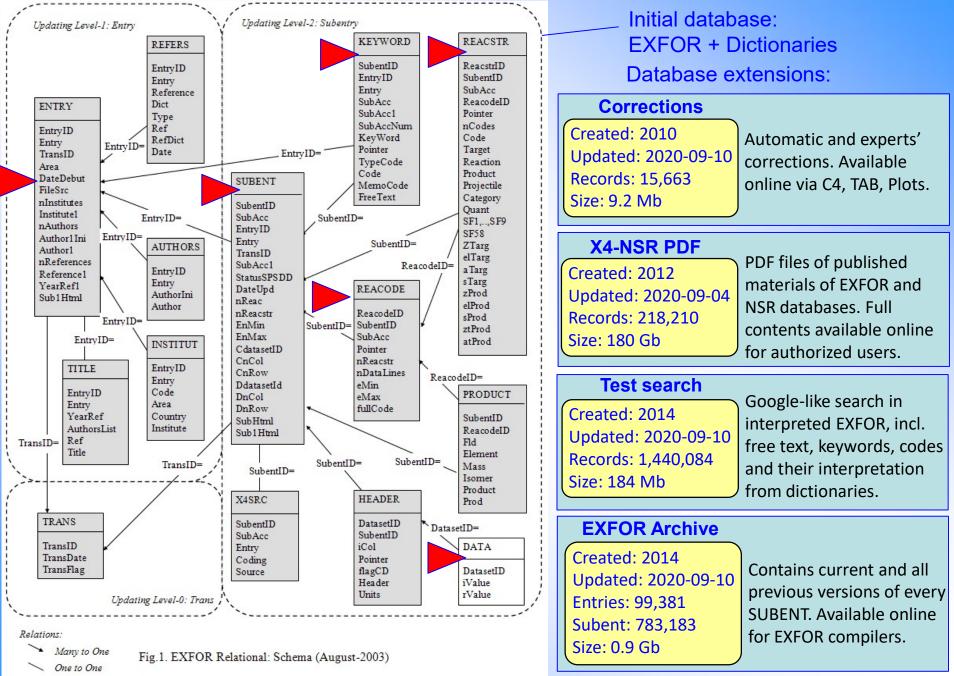
WPEC Subgroup-50, "Developing an automatically readable, comprehensive and curated experimental reaction database" 1-st Meeting, WebEx, 14-15 September 2020

Data formats overview

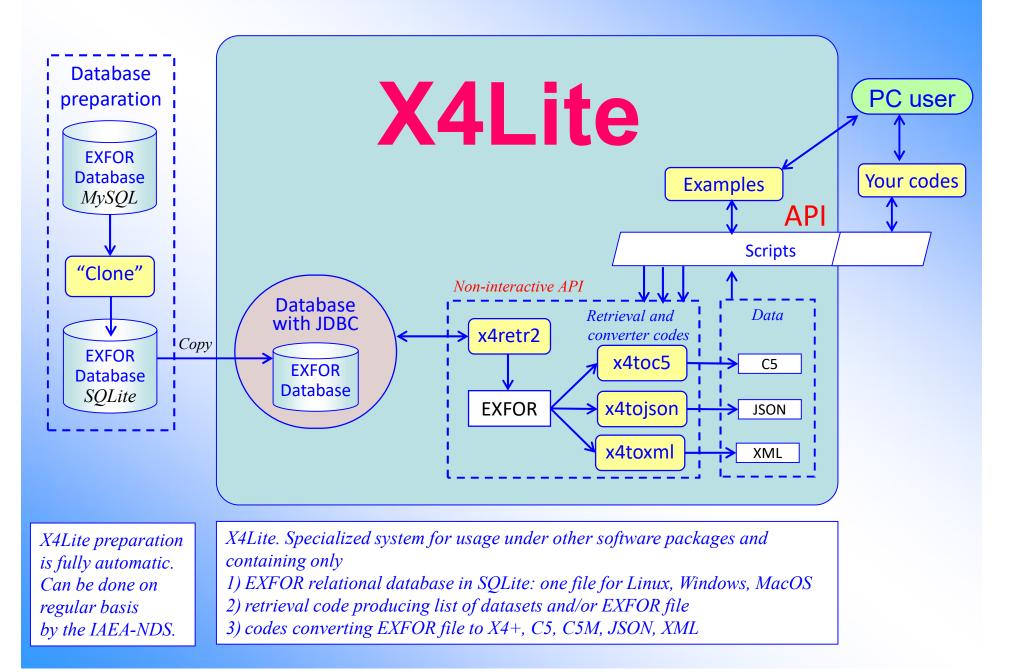
X4+ EXFOR-Interpreted; X4± Interactive Tree

- 1. Presents EXFOR as it is + extra lines with information from Dictionaries, NSR, etc.
- 2. Numbers in traditional style
- 3. No limit on the number of values per line

XML

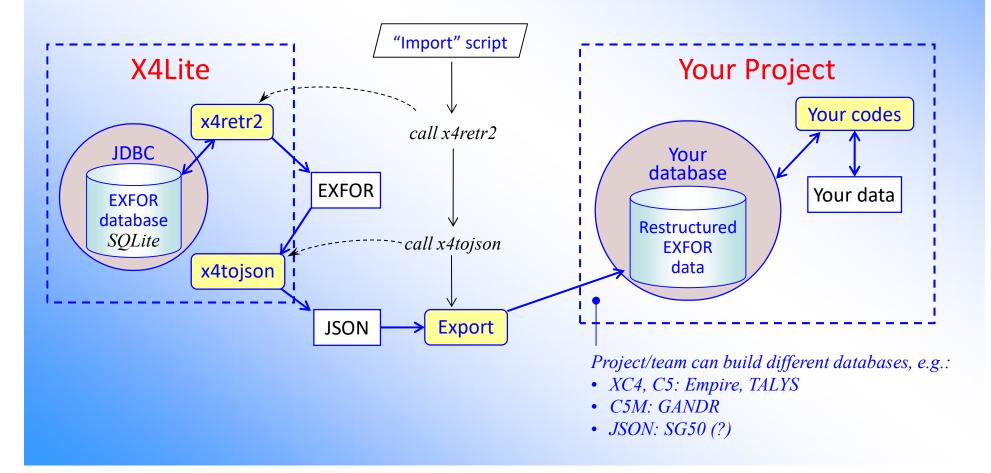

- 1. Repeats structure of EXFOR file using nested <elements>; includes information from EXFOR Dictionaries explaining codes
- 2. Numbers are presented in traditional style (no more E-less Fortran format for numbers)

C5, JSON, JSON_FY, Std_out

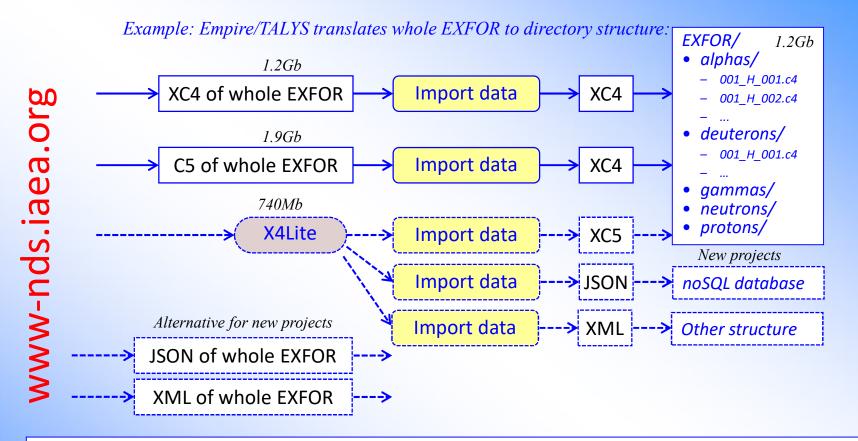

- 1. File contains Datasets; no text blocks for ENTRY, SUBENT, BIB; no Pointers
- 2. Dataset is identified by DatasetID (SUBENT + Pointer); includes all information related to one reaction: Reaction-code,
- selected/all Keywords from SUBENT-1 and current SUBENT, Data-section and Legend
- 3. Data are presented as function Y=Y(X1,X2,...), columns are sorted (fixed order according to Dictionary)
- 4. Data-section: all data from DATA and COMMON from EXFOR SUBENT-1 and current SUBENT
- 5. Legend and Keywords contain EXFOR codes and their interpretation (e.g. basic-units and conversion factors)
- 6. C5 and JSON_FY contain computational data values; StdOut, XML and JSON (as of now) only original values

EXFOR file	C5, JSON, StdOut												
ENTRY SUBENT 001 BIB KEYWORDS -		DATASET { KEYWORDS REACTION DATA		Comparison of formats: summary									
ENDBIB			\rightarrow LEGEND	Nucl. data	Numbers' format	Sequence	Meta	Interpret. from	Orig.	Computa-			
COMMON		۰.	}	format	/Language	(main block)	data	Dictionaries	data	tional data			
SUBENT BIB						,DATASET { }	EXFOR	Fixed-length, E-less	ENTRY	yes	no	yes	no
KEYWORDS -						, DATASET { }	C4	Fixed-fmt lines	SUBENT	no	no	no	yes
REACTION -				C5	Fixed-fmt lines	Datasets	yes	yes	no	yes			
ENDBIB				X4+	Flex. fields /HTML	ENTRY	yes	yes	yes	no			
				XML	Flex. fields /XML	ENTRY	yes	yes	yes	no			
DATA — — — — — — — — — — — — — — — — — —				JSON	Flex. fields /JSON	Datasets	yes	yes	yes	no			
ENIKI				JSON_FY	Flex. fields / JSON	Datasets	yes	yes	no	yes			
ENTRY				JSON_X4	Flex. fields / JSON	Datasets	yes	yes	yes	yes			

EXFOR database: structure and content



X4Lite: database, retrieval and converter codes



Planning your database for your project?

- Select data format (e.g. JSON or C5 or XML)
- Prepare your "import" script doing:
 - Search and retrieve EXFOR data needed in your project
 - [Make a loop on the list of found datasets if necessary]
 - Call converter from EXFOR file to selected format
 - Store dataset into your data structure or SQL/noSQL database
- Download X4Lite and run "import" script

X4Lite: pro & con. Alternatives.

What is difference?

- More rational maintenance (at the IAEA-NDS)
- Freedom for user to use formats C4/C5, JSON, XML; easy to use modern tools and languages
- Translation from EXFOR C4: 65%, to C5: 75%, to JSON: 98%, to XML: 100%
- Easy programming access to all data/information from EXFOR and Dictionaries (name:value)
- Easier to filter out and store only data needed for a project
- Options to make re-calculations and include/exclude data columns: CM-Lab, RR-B/SR, inverse reactions and kinematics, dictionary information, perhaps monitor data and/or automatic renormalization
- Other advantages/disadvantages will be discovered during exploitation

Concluding remarks

- EXFOR data correction system is successfully functioning on Web at the IAEA-NDS and NNDC cites working with C4 and TABLE files. Current system can be revised, expanded or rewritten in a short term.
- 2. Current versions of EXFOR output to C5, X4JSON, XML have a great potential and should be propagated to users' community for practical usage in applications, for feedback and improvements.
- 3. X4Lite is computational EXFOR for professional nuclear data users.

Part III.

Translation data from EXFOR relational to JSON-X4DB

Prepared for WPEC SG50, Codes and Database SSG, Web Meeting, 06 April 2021

Features and parameters of EXFOR system

1. Planned features of the system (2000):

- 1. All information in EXFOR should be available for search in any order (direct access)
- 2. Execution time of typical request should be within 2-3 sec
- 3. The system should be really platform independent (tested) (simplest: no stored procedures, no foreign keys, etc.)
- ▶ 4. The system should guarantee integrity of original data
 - usage of BLOBs to store SUBENT
 - o data are stored in their original form (not by lines as it is done in NSR database)
 - o convincing other centers to switch to central database
- 5. Whole system (database and programs) should fit to CD-ROM=640Mb (storage of zipped BLOBs)
- 6. The database should be easy deployed to mirror-sites (MyISAM, MDB) without uploading system
- 7. Extendable set of tables and columns in the tables
- 8. System should allow usage of programs on several languages (legacy codes) and extensions
- 9. Modularity and robustness of software, re-use of modules
- 10. Interactive multiplatform plotting

2. Allowed to achieve:

- 1. Merging EXFOR libraries to common library (2002-2005)
- 2. Global EXFOR maintenance system in the IAEA-NDS (since 2005): TRANS files and fixed Master file for every update
- 3. Optimising of efforts in NRDC
- 4. Common (robust) EXFOR Web retrieval system: IAEA-NDS, NNDC (USA), India, China, Russia
- 5. Integrating with EXFOR compilation control system

3. Not foreseeing extensions (2007-2013):

- 1. PDF collection (authorised Web access)
- 2. Connection and import from NSR
- 3. Export to R33 (IBANDL)
- 4. EXFOR data re-normalization system
- 5. Construction covariance matrices using uncertainties
- 6. Uploading system for remote data checking and processing (for EXFOR compilers)
- 7. Web system without Internet

Current status of EXFOR-Relational

1. Relational EXFOR database: common between NDS-NNDC

- a) schema based on "EXFOR-Access CD-ROM", discussed and initially agreed in 2000 between NDS, NNDC, CNPD (after "Nuclear database: migration to relational database and Java technology")
- b) existing and maintained at NDS and NNDC from 2000 to 2021:
- c) OS: Windows, Linux, MacOS
- d) DBMS: MS-Access (2000), MySQL (2001), SyBase (2005), SQLite (2020)
- e) Web: NDS, NNDC, 3 Mirrors (India, China, Russia)
- f) deployed to Mirror-sites and on CD-ROM to individual users
- 2. EXFOR-CINDA Web Retrieval system: official NRDC Web retrieval system since 2008
- 3. Current versions of EXFOR output to C5, X4JSON, XML:
 - a) easier to use in users' applications than EXFOR
 - b) have fixed format, require converter

Extension of EXFOR-Relational

- 1. Currently EXFOR data are stored in relational EXFOR database in BLOBs as part of SUBENT and therefore need to be extracted by an external program.
 - a) So, we need retrieval + converter of EXFOR to another formats.
 - b) Can we avoid complicated converter?
 - c) Can we store/retrieve data values in rational way? (avoid BLOBs)
- 2. Traditionally relational databases have problems to store/manipulate with flexible vector data
- 3. Now relational DBMS-s offer some functionality to deal with JSON-type fields in the tables.

Flexible solution: use single JSON cell to store one experimental data point

create table x4data_hdr (
DatasetID	varchar(9)							
,typ	varchar(1)	not null						
,ihdr	integer	null						
, common	smallint	null default 0						
, CM	smallint	null default 0	\mathbf{N}					
hdr	varchar(12)	not null						
units	varchar(12)	not null						
, rank	real	null						
,DataType	varchar(12)	not null						
,what	varchar(12)	not null	/					
, expansion	varchar (80) null						
, PRIMARY KEY	(DatasetID,	typ,ihdr)						
) ENGINE=MyISAM DEFAU								
create table x4data_dat (
DatasetID	varchar(9)	not null						
,idat	integer							
dat	json	F						
PRIMARY KEY		idat)						
) ENGINE=MyISAM DEFAU								

- 1. Idea is to store for data points based on the concept of Dataset (sorted EXFOR): original EXFOR data and computational data
- Two new tables for Headers and Data: x4data_hdr and x4data_dat
- 3. Headers have type "x" and "c" and description of the Data from EXFOR Dictionaries
- 4. Table x4data_dat has a column with type JSON

Extension of EXFOR-Relational

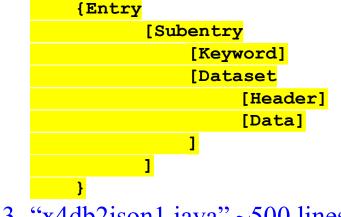
--Reac:1-H-1(HE3,EL)1-H-1,,DA Q:[Differential c/s with respect to angle] Header of EXFOR DATA --DataLY:27 insert into x4data_hdr(DatasetID, typ, ihdr, common, cm, hdr, units, what, DataType, rank, expansion) values ('A0626002', 'x',0,0,0, 'DATA', 'MB/SR', 'Y.Value', '21',0.1, 'Data: data'); insert into x4data_hdr(DatasetID,typ,ihdr,common,cm,hdr,units,what,DataType,rank,expansion) values ('A0626002', 'x',1,0,0, 'ERR-T', 'MB/SR', 'Y.Err+-', '21',0.911, 'Data: data /Error/'); insert into x4data_hdr(DatasetID,typ,ihdr,common,cm,hdr,units,what,DataType,rank,expansion) values ('A0626002', 'x',2,1,0, 'ERR-S', 'PER-CENT', 'Y.SErr+-', '21',0.944, 'Data: data /Error/'); insert into x4data_hdr(DatasetID, typ, ihdr, common, cm, hdr, units, what, DataType, rank, expansion) values ('A0626002', 'x', 3, 1, 0, 'ERR-2', 'PER-CENT', 'Y.pErr+-', '21', 0.955, 'Data: data /Error/'); insert into x4data_hdr(DatasetID, typ, ihdr, common, cm, hdr, units, what, DataType, rank, expansion) values ('A0626002', 'x',4,1,0, 'ERR-3', 'PER-CENT', 'Y.pErr+-', '21',0.955, 'Data: data /Error/'); insert into x4data_hdr(DatasetID, typ, ihdr, common, cm, hdr, units, what, DataType, rank, expansion) values ('A0626002', 'x', 5,0,0, 'EN', 'KEV', 'X1.Value', '41', 1.1, 'Incident energy: energy'); insert into x4data_hdr(DatasetID.typ.ihdr.common.cm.hdr.units.what.DataType.rank.expansion) values ('A0626002', 'x', 6, 0, 0, 'ANG', 'ADEG', 'X2. Value', '61', 2.1, 'Angle: angle'); Header of Comp. data insert into x4data_hdr(DatasetID, typ, ihdr, common, cm, hdr, units, what, DataType, rank, expansion) values ('A0626002', 'c',0,0,0, 'y', 'B/SR', 'DATA', '21',0.0, 'Data: data'); insert into x4data_hdr(DatasetID, typ, ihdr, common, cm, hdr, units, what, DataType, rank, expansion) values ('A0626002','c',1,0,0,'x1','EV','EN','41',1.0,'Incident energy: energy'): insert into x4data_hdr(DatasetID, typ, ihdr, common, cm, hdr, units, what, DataType, rank, expansion) values ('A0626002', 'c',2,0,0, 'x2', 'ADEG', 'ANG', '61',2.0, 'Angle: angle'); insert into x4data_dat(DatasetID,idat,dat) values (JSON object { <u>'A0626002'.0</u> Comp. data: y(x1,x2...)'{"y":0.5178,"dy":0.04142,"x1":1.9e+06,"x2":30.0 ←

,"DATA":517.8,"ERR-T":41.42,"ERR-S":3.0,"ERR-2":2.0← ,"ERR-3":4.0,"EN":1900.0,"ANG":30.0}'

.EXFOR DATA

Example of SQL query extracting data from JSON fields

```
SELECT distinct x4data_dat.DatasetID, x4data_dat.idat as iPoint
,ENTRY.YearRef1 as Year
,concat(ENTRY.Author1Ini,ENTRY.Author1) as Author1
,json_extract(x4data_dat.dat,'$.x1') as En
,json_extract(x4data_dat.dat,'$.y') as Sig
,json_extract(x4data_dat.dat,'$.dy') as dSig
FROM x4data_dat
inner join REACODE on REACODE.ReacodeID=x4data_dat.DatasetID
inner join SUBENT on REACODE.SubentID=SUBENT.SubentID
inner join ENTRY on ENTRY.EntryID=SUBENT.EntryID
where REACODE.fullCode='13-AL-27(N,A)11-NA-24,,SIG'
and json_extract(x4data_dat.dat,'$.x1')>8e6
and json_extract(x4data_dat.dat,'$.dy') is not null
order by x4data_dat.DatasetID,x4data_dat.idat
```


DatasetID	iPoint	Year	Author1	En	Sig	dSig
115300032	0	1961	H.W.Schmitt	1.476e+07	0.117	0.008
410480022	12	1989	N.V.Kornilov	8.04e+06	0.0443	0.0011
410480022	13	1989	N.V.Kornilov	8.12e+06	0.0442	0.0011
410480022	14	1989	N.V.Kornilov	8.2e+06	0.0453	0.001
410480022	15	1989	N.V.Kornilov	8.28e+06	0.0479	0.0011
410480022	16	1989	N.V.Kornilov	8.37e+06	0.0491	0.0012
410480022	17	1989	N.V.Kornilov	8.45e+06	0.054	0.0012
410480022	18	1989	N.V.Kornilov	8.57e+06	0.058	0.0015
410480022	19	1989	N.V.Kornilov	8.71e+06	0.0631	0.0015
410480022	20	1989	N.V.Kornilov	8.83e+06	0.0662	0.0017

Translation EXFOR database to JSON

- 1. We can use names of columns from database schema to generate JSON
- 2. We can use SQL SELECT query to rename, filter and combine columns from EXFOR database
- 3. We can build a program generating any JSON hierarchy automatically, or semi-automatically using EXFOR hierarchy and configuration file
- 4. Such a program could generate JSON files for selected part of EXFOR database

Program: x4db2json1.java, 2021-04-05

- 1. Generates one JSON file for single ENTRY
- 2. Hierarchy:

3. "x4db2json1.java" ~500 lines (main recursive method: exeSQL2json ~100 lines)

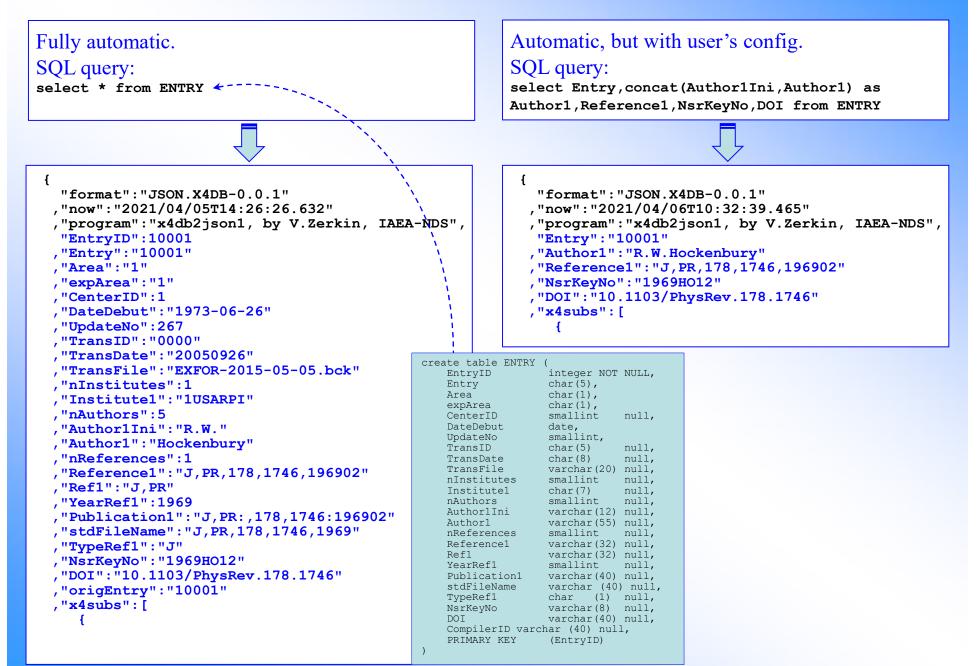
Automatically generated JSON file

, {

"Subent": "10001001"

```
Ł
 "format": "JSON.X4DB-0.0.1"
 ,"now":"2021/04/05T14:26:26.632"
 ,"program":"x4db2json1, by V.Zerkin, IAEA-NDS, 2021 (ver.2021-04-05)",
 "EntryID":10001
 ,"Entry":"10001"
                                                       ,"x4subs":[
 ,"Area":"1"
                                                           ł
 ,"expArea":"1"
                                                             "SubentID":10001001
 ,"CenterID":1
                                                            ,"SubAcc":"10001001"
 ,"DateDebut":"1973-06-26"
                                                            ,"EntryID":10001
                                                            ,"Entry":"10001"
 , "UpdateNo":267
                                                            ,"SPSDD":"0"
 ,"TransID":"0000"
                                                            ,"DateUpd":"2005-09-26 00:00:00.0"
 ,"TransDate":"20050926"
                                                            ,"DateCompil":"1998-09-14"
 "TransFile": "EXFOR-2015-05.bck"
                                                            ,"UpdateNo":267
 ,"nInstitutes":1
                                                            ,"TransID":"0000"
 ,"Institute1":"1USARPI"
                                                            ,"TransDate":"20050926"
 ,"nAuthors":5
                                                            ,"TransFile":"EXFOR-2015-05.bck"
 ,"Author1Ini":"R.W."
                                                            ,"nReac":0
 ,"Author1":"Hockenbury"
                                                            , "nReacstr":0
                                                            ,"CDatasetID":10001001
 ,"nReferences":1
                                                            ,"CnCol":0
 ,"Reference1":"J,PR,178,1746,196902"
                                                            , "CnRow": 0
 ,"Ref1":"J,PR"
                                                            ,"DDatasetID":1010001001
 ,"YearRef1":1969
                                                            ,"DnCol":0
 ,"Publication1":"J, PR:,178,1746:196902"
                                                            , "DnRow": 0
 ,"stdFileName":"J,PR,178,1746,1969"
                                                            ,"origEntry":"10001"
 ,"TypeRef1":"J"
                                                            ,"origSubent":"10001001"
 ,"NsrKeyNo":"1969H012"
                                                            ,"x4kws":[
 ,"DOI":"10.1103/PhysRev.178.1746"
 ,"origEntry":"10001"
                                                                 "Subent": "10001001"
 ,"x4subs":[
                                                                ,"iKeyword":1
                                                                , "KeyWord": "INSTITUTE"
    ł
                                                                 , "Code": "1USARPI"
```

Automatically generated JSON file (cont.)


Automatically generated JSON file (cont.)

,"x4reac":[

```
"ReacodeID": "100010061"
,"SubentID":10001006
,"SubAcc":"10001006"
,"Pointer":"1"
."nReacstr":1
,"nDataLines":24
"eMin":2350.0
"eMax":129000.0
, "zaTarget1":26056
,"zaIncident1":1
, "MF": 402
,"MT":6001
,"reacCombi":"R1#"
,"fullCode":"26-FE-56(N,0),,EN"
,"x4reacstr":[
     "ReacstrID": "1000100611"
    ,"SubentID":10001006
    ,"ReacodeID":"100010061"
    ,"Pointer":"1"
    ,"iReacstr":1
    , "Code": "26-FE-56(N,0), , EN"
    ,"Target":"Fe-56"
    ,"Reaction":"N,0"
    ,"Projectile":"N"
    , "ReactionType": "RE"
    , "CindaQuantity": "RP"
    ,"Quant":"RP"
    ,"SF1":"26-FE-56"
    ,"SF2":"N"
    ,"SF3":"0"
    ,"SF6":"EN"
    ,"SF58":",EN"
    , "zIncident":0
    ,"zTarg":26
    ,"elTarg":"Fe"
    ,"aTarg":56
    ,"ztTarg":"26"
    ,"atTarg":"56"
    ,"zProd":-1
    ,"aProd":-1
   }
]
```

```
,"x4data hdr":[
     "DatasetID": "100010061"
    ,"typ":"c"
    ,"ihdr":0
    , "common":0
    ,"cm":0
    ,"hdr":"y"
    ,"units":"EV"
    ,"rank":0.0
    ,"DataType":"21"
    ,"what":"DATA"
    ,"expansion":"Data: data"
     "DatasetID": "100010061"
    ,"tvp":"x"
    ,"ihdr":0
    , "common":0
    , "cm":0
    ,"hdr":"DATA"
    ,"units":"KEV"
    ,"rank":0.1
    ,"DataType":"21"
    ,"what":"Y.Value"
    ,"expansion":"Data: data"
   }
,"x4data dat":[
     "DatasetID": "100010061"
    ,"idat":0
    ,"dat":{"y":2350.0,"DATA":2.35}
  , {
     "DatasetID": "100010061"
    ,"idat":1
    ,"dat":{"y":11200.0,"DATA":11.2}
```

Configuration

Concluding remarks

- Extension of EXFOR relational database to store computational and EXFOR data points as JSON objects can be useful for users' applications
- 2. Extended EXFOR database can be used for translation EXFOR data to JSON to be initial input for users NoSQL database
- 3. Translation program can be configurable depending on user needs
- 4. Automatically created NoSQL clone of EXFOR database can simplify of JSON database maintenance.

Thank you.

Citing of the materials of this presentation should be done with proper acknowledgement of the IAEA and author