
EXFOR relational database. X4Lite.
Accessing data in C5, XML, JSON.

Viktor Zerkin
International Atomic Energy Agency, Nuclear Data Section

Excerpt from the part-II of “Developing an automatically readable,
comprehensive and curated experimental reaction database”

WPEC Subgroup-50, 1-st Meeting, WebEx, 14-15 September 2020

WPEC SG50, Codes and Database SSG,
Web Meeting, 06 April 2021

Translation data from EXFOR relational
to JSON-X4DB

Part II. EXFOR relational database. X4Lite.
Accessing data in C5, XML, JSON

1. Data formats overview: X4+, XML, StdOut, C5, JSON;
concept of Dataset; Dataset vs. ENTRY/SUBENT/Pointer

2. EXFOR database: structure, content, updates

3. X4Lite: database, retrieval and converter codes; pro and con

Concluding remarks

Part III. Translation data from EXFOR relational to JSON-X4DB

1. Using database schema for creating JSON files

2. Relational database with JSON fields (hybrid implementation)

3. Universal flexible translation EXFOR Relational to JSON:
automatic and configurable Java-code

Concluding remarks

Contents

Part II.
EXFOR relational database. X4Lite.
Accessing data in C5, XML, JSON.

Excerpt from
WPEC Subgroup-50, “Developing an automatically readable, comprehensive and curated experimental reaction database”

1-st Meeting, WebEx, 14-15 September 2020

ENTRY
SUBENT 001
BIB
KEYWORDS

ENDBIB
COMMON

SUBENT
BIB
KEYWORDS
REACTION

ENDBIB
COMMON
DATA

ENTRY
...
ENTRY

DATASET {
KEYWORDS
REACTION
DATA
LEGEND
}
,DATASET{}
,DATASET{}

EXFOR file C5, JSON, StdOut

C5, JSON, JSON_FY, Std_out
1. File contains Datasets; no text blocks for ENTRY, SUBENT, BIB; no Pointers
2. Dataset is identified by DatasetID (SUBENT + Pointer); includes all information related to one reaction: Reaction-code,

selected/all Keywords from SUBENT-1 and current SUBENT, Data-section and Legend
3. Data are presented as function Y=Y(X1,X2,…), columns are sorted (fixed order according to Dictionary)
4. Data-section: all data from DATA and COMMON from EXFOR SUBENT-1 and current SUBENT
5. Legend and Keywords contain EXFOR codes and their interpretation (e.g. basic-units and conversion factors)
6. C5 and JSON_FY contain computational data values; StdOut, XML and JSON (as of now) – only original values

XML
1. Repeats structure of EXFOR file using nested <elements>;

includes information from EXFOR Dictionaries explaining codes
2. Numbers are presented in traditional style

(no more E-less Fortran format for numbers)

Nucl. data
format

Numbers’ format
/Language

Sequence
(main block)

Meta
data

Interpret. from
Dictionaries

Orig.
data

Computa-
tional data

EXFOR Fixed-length, E-less ENTRY yes no yes no
C4 Fixed-fmt lines SUBENT no no no yes
C5 Fixed-fmt lines Datasets yes yes no yes
X4+ Flex. fields /HTML ENTRY yes yes yes no
XML Flex. fields /XML ENTRY yes yes yes no
JSON Flex. fields /JSON Datasets yes yes yes no
JSON_FY Flex. fields / JSON Datasets yes yes no yes
JSON_X4 Flex. fields / JSON Datasets yes yes yes yes

Data formats overview
X4+ EXFOR-Interpreted; X4± Interactive Tree
1. Presents EXFOR as it is + extra lines with

information from Dictionaries, NSR, etc.
2. Numbers in traditional style
3. No limit on the number of values per line

Comparison of formats: summary

EXFOR database: structure and content
Initial database:
EXFOR + Dictionaries
Database extensions:

Created: 2010
Updated: 2020-09-10
Records: 15,663
Size: 9.2 Mb

Corrections

X4-NSR PDF

Automatic and experts’
corrections. Available
online via C4, TAB, Plots.

Created: 2012
Updated: 2020-09-04
Records: 218,210
Size: 180 Gb

PDF files of published
materials of EXFOR and
NSR databases. Full
contents available online
for authorized users.

Created: 2014
Updated: 2020-09-10
Records: 1,440,084
Size: 184 Mb

Test search
Google-like search in
interpreted EXFOR, incl.
free text, keywords, codes
and their interpretation
from dictionaries.

Created: 2014
Updated: 2020-09-10
Entries: 99,381
Subent: 783,183
Size: 0.9 Gb

EXFOR Archive

Contains current and all
previous versions of every
SUBENT. Available online
for EXFOR compilers.

Database
with JDBC

EXFOR
Database

DataRetrieval and
converter codes

EXFOR

x4retr2
x4toc5

x4tojson

x4toxml

C5

JSON

XML

Non-interactive API

Examples

Scripts

Your codes

PC user

Copy
EXFOR

Database
SQLite

“Clone”

EXFOR
Database
MySQL

Database
preparation

API

X4Lite: database, retrieval and converter codes

X4Lite. Specialized system for usage under other software packages and
containing only
1) EXFOR relational database in SQLite: one file for Linux, Windows, MacOS
2) retrieval code producing list of datasets and/or EXFOR file
3) codes converting EXFOR file to X4+, C5, C5M, JSON, XML

X4Lite preparation
is fully automatic.
Can be done on
regular basis
by the IAEA-NDS.

X4Lite

Your ProjectX4Lite

JDBC

EXFOR

x4retr2

x4tojson

Your codes

“Import” script

Planning your database for your project?

EXFOR
database
SQLite

• Select data format (e.g. JSON or C5 or XML)
• Prepare your “import” script doing:

• Search and retrieve EXFOR data needed in your project
• [Make a loop on the list of found datasets if necessary]
• Call converter from EXFOR file to selected format
• Store dataset into your data structure or SQL/noSQL database

• Download X4Lite and run “import” script

JSON

Your
database

Restructured
EXFOR
data

Export

Your data

call x4retr2

call x4tojson

Project/team can build different databases, e.g.:
• XC4, C5: Empire, TALYS
• C5M: GANDR
• JSON: SG50 (?)

X4Lite: pro & con. Alternatives.

EXFOR/
• alphas/

– 001_H_001.c4
– 001_H_002.c4
– ...

• deuterons/
– 001_H_001.c4
– …

• gammas/
• neutrons/
• protons/

Import data XC4

Example: Empire/TALYS translates whole EXFOR to directory structure:

XC4 of whole EXFOR

w
w

w
-n

ds
.ia

ea
.o

rg

What is difference?
• More rational maintenance (at the IAEA-NDS)
• Freedom for user to use formats C4/C5, JSON, XML; easy to use modern tools and languages
• Translation from EXFOR C4: 65%, to C5: 75%, to JSON: 98%, to XML: 100%
• Easy programming access to all data/information from EXFOR and Dictionaries (name:value)
• Easier to filter out and store only data needed for a project
• Options to make re-calculations and include/exclude data columns: CM-Lab, RR-B/SR, inverse reactions

and kinematics, dictionary information, perhaps monitor data and/or automatic renormalization
• Other advantages/disadvantages will be discovered during exploitation

1.2Gb

1.2Gb

Import data XC4C5 of whole EXFOR
1.9Gb

JSON of whole EXFOR

XML of whole EXFOR

Alternative for new projects

Import data XC5X4Lite
740Mb

Import data JSON noSQL database

Import data XML Other structure

New projects

1. EXFOR data correction system is successfully functioning on Web
at the IAEA-NDS and NNDC cites working with C4 and TABLE files.
Current system can be revised, expanded or rewritten in a short
term.

2. Current versions of EXFOR output to C5, X4JSON, XML have a
great potential and should be propagated to users’ community for
practical usage in applications, for feedback and improvements.

3. X4Lite is computational EXFOR for professional nuclear data users.

Concluding remarks

Part III.
Translation data

from EXFOR relational
to JSON-X4DB

Prepared for
WPEC SG50, Codes and Database SSG,

Web Meeting, 06 April 2021

Features and parameters of EXFOR system
1. Planned features of the system (2000):

1. All information in EXFOR should be available for search in any order (direct access)
2. Execution time of typical request should be within 2-3 sec
3. The system should be really platform independent (tested) (simplest: no stored procedures, no foreign keys, etc.)
4. The system should guarantee integrity of original data

o usage of BLOBs to store SUBENT
o data are stored in their original form (not by lines as it is done in NSR database)
o convincing other centers to switch to central database

5. Whole system (database and programs) should fit to CD-ROM=640Mb (storage of zipped BLOBs)
6. The database should be easy deployed to mirror-sites (MyISAM, MDB) without uploading system
7. Extendable set of tables and columns in the tables
8. System should allow usage of programs on several languages (legacy codes) and extensions
9. Modularity and robustness of software, re-use of modules
10. Interactive multiplatform plotting

2. Allowed to achieve:
1. Merging EXFOR libraries to common library (2002-2005)
2. Global EXFOR maintenance system in the IAEA-NDS (since 2005): TRANS files and fixed Master file for every update
3. Optimising of efforts in NRDC
4. Common (robust) EXFOR Web retrieval system: IAEA-NDS, NNDC (USA), India, China, Russia
5. Integrating with EXFOR compilation control system

3. Not foreseeing extensions (2007-2013):
1. PDF collection (authorised Web access)
2. Connection and import from NSR
3. Export to R33 (IBANDL)
4. EXFOR data re-normalization system
5. Construction covariance matrices using uncertainties
6. Uploading system for remote data checking and processing (for EXFOR compilers)
7. Web system without Internet

1. Relational EXFOR database: common between NDS-NNDC
a) schema based on “EXFOR-Access CD-ROM”, discussed and initially

agreed in 2000 between NDS, NNDC, CNPD (after “Nuclear database:
migration to relational database and Java technology”)

b) existing and maintained at NDS and NNDC from 2000 to 2021:
c) OS: Windows, Linux, MacOS
d) DBMS: MS-Access (2000), MySQL (2001), SyBase (2005), SQLite (2020)
e) Web: NDS, NNDC, 3 Mirrors (India, China, Russia)
f) deployed to Mirror-sites and on CD-ROM to individual users

2. EXFOR-CINDA Web Retrieval system:
official NRDC Web retrieval system since 2008

3. Current versions of EXFOR output to C5, X4JSON, XML:
a) easier to use in users’ applications than EXFOR
b) have fixed format, require converter

Current status of EXFOR-Relational

1. Currently EXFOR data are stored in relational EXFOR database in BLOBs
as part of SUBENT and therefore need to be extracted by an external program.

a) So, we need retrieval + converter of EXFOR to another formats.
b) Can we avoid complicated converter?
c) Can we store/retrieve data values in rational way? (avoid BLOBs)

2. Traditionally relational databases have problems to store/manipulate with flexible vector data

3. Now relational DBMS-s offer some functionality to deal with JSON-type fields in the tables.

Flexible solution: use single JSON cell to store one experimental data point

Extension of EXFOR-Relational

1. Idea is to store for data points based on the
concept of Dataset (sorted EXFOR): original
EXFOR data and computational data

2. Two new tables for Headers and Data:
x4data_hdr and x4data_dat

3. Headers have type “x” and “c” and description
of the Data from EXFOR Dictionaries

4. Table x4data_dat has a column with type
JSON

JSON object {
Comp. data: y(x1,x2…)
,EXFOR DATA

}

Extension of EXFOR-Relational
Header of EXFOR DATA

Header of Comp. data

Example of SQL query extracting data from JSON fields

DatasetID iPoint Year Author1 En Sig dSig
115300032 0 1961 H.W.Schmitt 1.476e+07 0.117 0.008
410480022 12 1989 N.V.Kornilov 8.04e+06 0.0443 0.0011
410480022 13 1989 N.V.Kornilov 8.12e+06 0.0442 0.0011
410480022 14 1989 N.V.Kornilov 8.2e+06 0.0453 0.001
410480022 15 1989 N.V.Kornilov 8.28e+06 0.0479 0.0011
410480022 16 1989 N.V.Kornilov 8.37e+06 0.0491 0.0012
410480022 17 1989 N.V.Kornilov 8.45e+06 0.054 0.0012
410480022 18 1989 N.V.Kornilov 8.57e+06 0.058 0.0015
410480022 19 1989 N.V.Kornilov 8.71e+06 0.0631 0.0015
410480022 20 1989 N.V.Kornilov 8.83e+06 0.0662 0.0017

1. We can use names of columns from database schema to generate JSON
2. We can use SQL SELECT query to rename, filter and combine columns from EXFOR

database
3. We can build a program generating any JSON hierarchy automatically, or semi-automatically

using EXFOR hierarchy and configuration file
4. Such a program could generate JSON files for selected part of EXFOR database

Program: x4db2json1.java, 2021-04-05
1. Generates one JSON file for single ENTRY
2. Hierarchy:

 {Entry
 [Subentry
 [Keyword]
 [Dataset
 [Header]
 [Data]
]
]
 }

3. “x4db2json1.java” ~500 lines (main recursive method: exeSQL2json ~100 lines)

Translation EXFOR database to JSON

{
"format":"JSON.X4DB-0.0.1"

,"now":"2021/04/05T14:26:26.632"
,"program":"x4db2json1, by V.Zerkin, IAEA-NDS, 2021 (ver.2021-04-05)",
"EntryID":10001

,"Entry":"10001"
,"Area":"1"
,"expArea":"1"
,"CenterID":1
,"DateDebut":"1973-06-26"
,"UpdateNo":267
,"TransID":"0000"
,"TransDate":"20050926"
,"TransFile":"EXFOR-2015-05-05.bck"
,"nInstitutes":1
,"Institute1":"1USARPI"
,"nAuthors":5
,"Author1Ini":"R.W."
,"Author1":"Hockenbury"
,"nReferences":1
,"Reference1":"J,PR,178,1746,196902"
,"Ref1":"J,PR"
,"YearRef1":1969
,"Publication1":"J,PR:,178,1746:196902"
,"stdFileName":"J,PR,178,1746,1969"
,"TypeRef1":"J"
,"NsrKeyNo":"1969HO12"
,"DOI":"10.1103/PhysRev.178.1746"
,"origEntry":"10001"
,"x4subs":[

{

Automatically generated JSON file

,"x4subs":[
{

"SubentID":10001001
,"SubAcc":"10001001"
,"EntryID":10001
,"Entry":"10001"
,"SPSDD":"0"
,"DateUpd":"2005-09-26 00:00:00.0"
,"DateCompil":"1998-09-14"
,"UpdateNo":267
,"TransID":"0000"
,"TransDate":"20050926"
,"TransFile":"EXFOR-2015-05-05.bck"
,"nReac":0
,"nReacstr":0
,"CDatasetID":10001001
,"CnCol":0
,"CnRow":0
,"DDatasetID":1010001001
,"DnCol":0
,"DnRow":0
,"origEntry":"10001"
,"origSubent":"10001001"
,"x4kws":[

{
"Subent":"10001001"
,"iKeyword":1
,"KeyWord":"INSTITUTE"
,"Code":"1USARPI"

}
,{

"Subent":"10001001"
,"iKeyword":2

Automatically generated JSON file (cont.)

Keyword

Code

Free text

,"x4reac":[
{
"ReacodeID":"100010061"
,"SubentID":10001006
,"SubAcc":"10001006"
,"Pointer":"1"
,"nReacstr":1
,"nDataLines":24
,"eMin":2350.0
,"eMax":129000.0
,"zaTarget1":26056
,"zaIncident1":1
,"MF":402
,"MT":6001
,"reacCombi":"R1#"
,"fullCode":"26-FE-56(N,0),,EN"
,"x4reacstr":[

{
"ReacstrID":"1000100611"
,"SubentID":10001006
,"ReacodeID":"100010061"
,"Pointer":"1"
,"iReacstr":1
,"Code":"26-FE-56(N,0),,EN"
,"Target":"Fe-56"
,"Reaction":"N,0"
,"Projectile":"N"
,"ReactionType":"RE"
,"CindaQuantity":"RP"
,"Quant":"RP"
,"SF1":"26-FE-56"
,"SF2":"N"
,"SF3":"0"
,"SF6":"EN"
,"SF58":",EN"
,"zIncident":0
,"zTarg":26
,"elTarg":"Fe"
,"aTarg":56
,"ztTarg":"26"
,"atTarg":"56"
,"zProd":-1
,"aProd":-1
}

]

Automatically generated JSON file (cont.)

,"x4data_hdr":[
{
"DatasetID":"100010061"
,"typ":"c"
,"ihdr":0
,"common":0
,"cm":0
,"hdr":"y"
,"units":"EV"
,"rank":0.0
,"DataType":"21"
,"what":"DATA"
,"expansion":"Data: data"
}
,{

"DatasetID":"100010061"
,"typ":"x"
,"ihdr":0
,"common":0
,"cm":0
,"hdr":"DATA"
,"units":"KEV"
,"rank":0.1
,"DataType":"21"
,"what":"Y.Value"
,"expansion":"Data: data"
}

]
,"x4data_dat":[

{
"DatasetID":"100010061"
,"idat":0
,"dat":{"y":2350.0,"DATA":2.35}
}
,{

"DatasetID":"100010061"
,"idat":1
,"dat":{"y":11200.0,"DATA":11.2}
}

{
"format":"JSON.X4DB-0.0.1"
,"now":"2021/04/06T10:32:39.465"
,"program":"x4db2json1, by V.Zerkin, IAEA-NDS",
"Entry":"10001"
,"Author1":"R.W.Hockenbury"
,"Reference1":"J,PR,178,1746,196902"
,"NsrKeyNo":"1969HO12"
,"DOI":"10.1103/PhysRev.178.1746"
,"x4subs":[

{

Configuration

{
"format":"JSON.X4DB-0.0.1"
,"now":"2021/04/05T14:26:26.632"
,"program":"x4db2json1, by V.Zerkin, IAEA-NDS",
"EntryID":10001
,"Entry":"10001"
,"Area":"1"
,"expArea":"1"
,"CenterID":1
,"DateDebut":"1973-06-26"
,"UpdateNo":267
,"TransID":"0000"
,"TransDate":"20050926"
,"TransFile":"EXFOR-2015-05-05.bck"
,"nInstitutes":1
,"Institute1":"1USARPI"
,"nAuthors":5
,"Author1Ini":"R.W."
,"Author1":"Hockenbury"
,"nReferences":1
,"Reference1":"J,PR,178,1746,196902"
,"Ref1":"J,PR"
,"YearRef1":1969
,"Publication1":"J,PR:,178,1746:196902"
,"stdFileName":"J,PR,178,1746,1969"
,"TypeRef1":"J"
,"NsrKeyNo":"1969HO12"
,"DOI":"10.1103/PhysRev.178.1746"
,"origEntry":"10001"
,"x4subs":[

{

Fully automatic.
SQL query:
select * from ENTRY

Automatic, but with user’s config.
SQL query:
select Entry,concat(Author1Ini,Author1) as
Author1,Reference1,NsrKeyNo,DOI from ENTRY

create table ENTRY (
EntryID integer NOT NULL,
Entry char(5),
Area char(1),
expArea char(1),
CenterID smallint null,
DateDebut date,
UpdateNo smallint,
TransID char(5) null,
TransDate char(8) null,
TransFile varchar(20) null,
nInstitutes smallint null,
Institute1 char(7) null,
nAuthors smallint null,
Author1Ini varchar(12) null,
Author1 varchar(55) null,
nReferences smallint null,
Reference1 varchar(32) null,
Ref1 varchar(32) null,
YearRef1 smallint null,
Publication1 varchar(40) null,
stdFileName varchar (40) null,
TypeRef1 char (1) null,
NsrKeyNo varchar(8) null,
DOI varchar(40) null,
CompilerID varchar (40) null,
PRIMARY KEY (EntryID)

)

1. Extension of EXFOR relational database to store computational
and EXFOR data points as JSON objects can be useful for users’
applications

2. Extended EXFOR database can be used for translation EXFOR data
to JSON to be initial input for users NoSQL database

3. Translation program can be configurable depending on user needs

4. Automatically created NoSQL clone of EXFOR database can
simplify of JSON database maintenance.

Concluding remarks

Thank you.

Citing of the materials of this presentation should be done with proper acknowledgement of the IAEA and author

