Prototype of a ^{58}Fe EMPIRE evaluation

Part II: GitLab with Continuous Integration demo and thoughts

M. Herman, M. Fleming

WPEC Subgroup 49 WebEx meeting
13 May 2020
Background and motivation

- Storing the ENDF-6 (or GNDS) files in a version control system is what library projects have been doing
- Supplemented with description in a detailed report or other peer-reviewed publication
- Further supplemented with detailed MF1 comments
- However, we often have some issues:
 - Reports don’t provide all the data
 - MF1 can be very detailed but is often not – and in the best scenarios we have a lot of work to reproduce an evaluation
 - Ultimately, some evaluations cannot be reproduced today that we would like to build upon
- Question: can we at least version control all the inputs/data/codes/processes that went into making a file?
A version control system and collaborative platform

- We have to make some technology choices to start
 - The GNU git version control system has become a/the dominant tool for the kinds of VC requirements that nuclear data evaluation has
 - Extremely popular and mature platforms have been developed around git, with B$+ companies actively developing them
 - GitHub (acquired by MS) has the most popular cloud system with third-party CI
 - GitLab has open-source version for self-hosted solutions and integrated CI
 - NEA launched a GitLab server in late 2018 with early projects including GNDS, EXFOR compilation and VaNDaL
 - If you require access please me know

 https://git.oecd-nea.org/
The IAEA hosts the EMPIRE SVN repository and allowed a full repository conversion to git that is in the NEA GitLab (private)

- Contains some 2 decades of contributions with ~5000 commits
- Even with some databases in the VCS, it remains moderately sized at ~630 MB compressed

https://git.oecd-nea.org/science/wpec/empire/empire-full
EMPIRE CI system

- GitLab provides a very convenient and powerful continuous integration system to automatically perform tasks on any change
 - Typically we compile, run unit/integration/system/regression/etc tests and perform any deployment tasks
 - The standard EMPIRE tasks have been integrated into a CI within Docker containers
 - A Docker build is integrated as a final step after tests to provide images for evaluation workflows – also suitable for general distribution – with very simple requirements that can be replicated on many OSs
Apart from the code repository, the inputs for an evaluation of ^{58}Fe are stored.

A CI was added to automatically run these inputs with the current EMPIRE version (although any tagged version could be chosen).

Alternatively, evaluations could be linked via submodules, but Docker provides a complete run environment that has been tested.

Some comments

- EMPIRE is relatively small at <700 MB compressed, but it contains multiple separate projects:
 - RIPL
 - PREPRO
 - ENDF utilities
 - Zerkin programs
 - Various other tools common to other projects…

- These create a parallel maintenance effort, fixes must be translated back and forth (and often aren’t)

- Recommendations:
 - Databases need rigorous version control systems that we can draw from directly within automatic tools
 - Utilities and shared codes (particularly open ones) should be in accessible VCS for automatic use
 - Once done, submodules and APIs can be used to greatly improve processes
Parting observations

- Docker containerisation trivialises the deployment to multiple operating systems/compilers and gives users more so they can address their own local system issues.

- GitLab/Hub requires very little effort to engage with and makes use of code systems tremendously better than no VCS.

- Collaboration is encouraged and easy, without relinquishing any control over a software project.

- As a distributed VCS, git repositories can be re-hosted at any location that the owners wish – private spaces can be used to prepare before release.

GNDS repository showing a host of contributions managed by the Chair:

https://git.oecd-nea.org/science/wpec/gnds/formats