Institute of Nuclear Energy Safety Technology, CAS · FDS Team

发展先进核能科技，让人类生活更美好！

www_fds.org.cn
Validation of SuperMC with Fusion Shielding Benchmarks from SINBAD

Jun ZOU

Contributed by FDS Team

Institute of Nuclear Energy Safety Technology (INESST)
Chinese Academy of Sciences

www.fds.org.cn
Contents

1. Introduction

2. Experimental Platforms and Summary of Benchmarks

3. Calculation Results

4. Summary
SuperMC

Super Multi-functional Calculation Program for Nuclear Design and Safety Evaluation
Basic Function: Full-functional Neutronics Calculations

1. Radiation transport calculation
 - **Multi-particles:** neutron (1e-11~150MeV), photon (1keV~1GeV), electron, proton and other charged particles.
 - **Flexible source description:** general source, critical source, surface source, user-defined source
 - **Physical parameters:** k_{eff}, surface/cell/mesh/detector flux, energy deposition, reaction rate, etc.
 - **Adaptive variance reduction** based on global weight window generator (GWWG)
 - **Various efficient parallel computation** MPI, OpenMP, Data decomposition parallel, etc.
 - **Temperature-dependent cross section treatment:** thermal & resonance, On-line/OTF

2. Isotopes depletion calculation
 - **Solving method:** Chebyshev Rational Approximation Method (CRAM), etc.
 - **Inner-coupling:** beginning-of-step constant flux approximation (BOS), predictor-corrector (PC), improved semi-predictor-corrector (ISPC) method, etc.

3. Material activation and transmutation calculation
 - **Computational modes:** point activation calculation, transport-activation coupling calculation, etc.
 - **Activation properties** activity, decay heat, biological hazard, dose rate, clearance index, etc.

4. Shutdown dose rate calculation
 - **Solving method:** Rigorous-Two-Step (R2S) method, Direct-one-step (D1S) method, Advanced D1S method
Feature 1: CAD-based Whole Process Accurate Modeling

- **Automatic modeling with CAD models**
 - Conversion between CAD/Image and MC simulation model, accurate description for complex irregular geometry
 - Parameterized-based high-fidelity (pin-by-pin level) whole reactor modeling

- **Integrated interactive modeling**
 - Whole model interactive modeling (geometry material, source, tally, etc.), neutronics and thermo-hydraulics coupled modeling

SuperMC
(direct calculation)

Other Codes
(input file generation)
- MCNP
- TRIPOLI
- PHITS
- Geant4
- FLUKA
Feature 2: Feature-accelerated High-efficiency Calculation

- **Radiation transport calculation acceleration methods**
 1. **Location prejudgment acceleration**
 - neighbor search, bounding box, optimal spatial subdivision method
 2. **Physics Pre-judgment acceleration**
 - Adaptive variance reduction based on weight window smoothing, Global weight window generator (GWWG), Uniform fission site method (UFS), GWWG coupled UFS
 3. **Hybrid MC and deterministic methods:**
 - Adaptive transaction region based region coupling, energy coupling, time coupling
 4. **Cell message based Multi-branches tree algorithm for massive tallies**
 5. **Other acceleration**
 - source convergence, union energy grid, etc.

- **Burnup/activation/dose calculation acceleration methods**
 1. **Nuclear data searching methods:**
 - union energy grid, bucket-sorting energy searching (reducing memory consume)
 2. **Dynamic construction method of transmutation chain based on depth-first Search**
 3. **Adaptive order reduction method for large scale matrix**
Feature 3: Intelligent Visualized Analysis

Surface rendering
Volume rendering
Iso-surface
Data extract
Visualization mixed with geometries
Rad-Human
Virtual-reality based simulation

Visualization for multiple codes: SuperMC, MCNP, TORT, FISPACT ...
Feature 4: Collaborative Nuclear and Multi-physics Design Based on Cloud Computing

http://www.SuperMC.cn
Contents

1. Introduction
2. Experimental Platforms and Summary of Benchmarks
3. Calculation Results
4. Summary
23 Fusion Neutronics Shielding Experiments

<table>
<thead>
<tr>
<th>Fusion Experiment Platform</th>
<th>Experiment Cases</th>
<th>Measured Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osaka</td>
<td>aluminum, silicon, nickel and tungsten sphere</td>
<td>Neutron/photon leakage spectrum</td>
</tr>
<tr>
<td>FNS</td>
<td>graphite, vanadium, oxygen, tungsten, skyshine</td>
<td>Neutron/photon leakage spectrum, reaction rate</td>
</tr>
<tr>
<td>FNG</td>
<td>tungsten, iron, silicon carbide, FNG_ss, FNG_dose, FNG_str, etc</td>
<td>Neutron/photon leakage spectrum, reaction rate</td>
</tr>
<tr>
<td>IPPE</td>
<td>thorium</td>
<td>Neutron/photon leakage spectrum</td>
</tr>
<tr>
<td>Kant</td>
<td>beryllium</td>
<td>Neutron/photon leakage spectrum</td>
</tr>
</tbody>
</table>
Contents

1. Introduction

2. Experimental Platforms and Summary of Benchmarks

3. Calculation Results

4. Summary
OKTAVIAN benchmark experiment

- Al
- Fe
- W
- Si
- Ni
Neutron leakage flux of Aluminum sphere

- For the neutron leakage flux calculated by SuperMC comparing with experimental results, the average deviation was about 8%, and the maximum deviation was in the energy range about 10 MeV.
- In the report “JAERI-M 94-014” from JAEA, the maximum deviation was in the energy range about 10 MeV. The similar deviations between calculation and experimental results were shown in Figure 5 from the JAEA report.
• The average deviation between SuperMC calculation results and experimental results was about 15%.
The maximum deviations between SuperMC results and experimental results were in the neutron energy range from 2 MeV to 10 MeV.
• Note: In the report “Neutron leakage spectra from a large iron sphere pulsed with 14 MeV neutrons”, the calculation results were lower than the measurement for this benchmark in the energy range between 2 to 10 MeV. The similar deviations between calculation and experimental results were shown in the right figure.
Neutron leakage flux of Tungsten sphere

The calculation results showed consistent tendency with the experimental results, the average deviation between calculation results and experimental results was about 15%.

Note: In the report “Collection of Experimental Data for Fusion Neutronics Benchmark, JAERI-M-94-014” from JAEA, the similar deviations between calculation and experimental results were shown in the right figure.
The average deviation between calculation results and experimental results was about 12%. The maximum deviation between SuperMC results and experimental results was in the energy ranges around 0.1 MeV.

Note: In the report “The quality assessment of the oktavian benchmark experiments”, the similar deviations between calculation and experimental results were shown in the right Figure.
Neutron leakage flux of Nickel sphere

• EXPH was the energy spectrum of high neutron energy region of experimental results, EXPL was energy spectrum of low neutron energy region of experimental results. As shown in this Figure, for the neutron leakage flux calculated by SuperMC comparing with experimental results, the average deviation was about 8%.
FNS benchmark experiment

- FNS_C
- FNS_O
- FNS_SKY
- FNS_V
- FNS_W
- FNS_DUCT
The average deviation was about 18%. The maximum deviation between SuperMC results and experimental results was in the energy ranges below 1 MeV.

Note: In the report “Compilation of Benchmark Results for Fusion Related Nuclear Data—JAEA-Data/Code 98-024” from JAEA, the calculation results were 200% lower than the measurement for this benchmark in the energy range below 1 MeV. The similar deviations between calculation and experimental results were shown in the Figure from the JAEA report.
Reaction rates of FNS Graphite
Neutron leakage flux of FNS Oxygen

- Point detectors were set in SuperMC to calculate neutron flux at 5 places. The calculation results showed good consistent tendency with the experimental results. In the neutron energy range from 0.3 MeV to 0.8 MeV and 2 MeV to 8 MeV, the average deviation between the neutron flux calculated by SuperMC and experimental results was about 10%.
Neutron leakage flux of FNS Sky

- As shown in this Figure, for the dose rate calculated by SuperMC comparing with experimental results, the average deviation was about 8%.
Neutron leakage flux of FNS Vanadium

As shown in this Figure, for the neutron leakage flux calculated by SuperMC comparing with experimental results, which showed good consistent, the average deviation was about 8%.
Neutron leakage flux of FNS Tungsten

- The comparison of neutron spectrum between calculation results and experimental results, which showed consistent tendency, except in the neutron energy range from 0.01 MeV to 0.03 MeV, the average deviations between calculation results and experimental results were about 10%, the maximum deviations between calculation results and experimental results were in the neutron energy range from 7 MeV to 11 MeV.

- Note: In the report “Data Collection of Fusion Neutronics Benchmark Experiment Conducted at FNS/JAERI- J98-021” from JAEA, the similar deviations between calculation and experimental results were shown in right Figure from the JAEA report.
Neutron leakage flux of FNS DUCT

- As shown in this Figure, for the neutron spectrum calculated by SuperMC comparing with experimental results, the average deviation was about 12%. The maximum deviation between SuperMC and experiment was in energy region at 1 MeV~2 MeV and 2.5 MeV~3 MeV. The main reason for the deviation may be that the calculation was difficult to converge in position #5.
FNG benchmark experiment

- FNG_SiC
- FNG_SS
- FNG_BLKT
- FNG_Dose
- FNG_Str
- FNG_W
As shown in this Figure, for the neutron spectrum calculated by SuperMC comparing with experimental results, the average deviation was about 12%. The maximum deviation between SuperMC and experiment was in energy region at 1 MeV~2 MeV and 2.5 MeV~3 MeV. The main reason for the deviation may be that the calculation was difficult to converge in position #5.
As shown in this Figure, for the reaction rates calculated by SuperMC comparing with experimental results, the average deviation was about 5%.
For the reaction rates calculated by SuperMC comparing with experimental results, the average deviation was about 5%.
For the reaction rates calculated by SuperMC comparing with experimental results, the average deviation was about 5%.

For the dose rates calculated by SuperMC comparing with experimental results, in different cooling times, the average deviation was about 4.5%.
For the reaction rates calculated by SuperMC comparing with experimental results, the average deviation was about 5%.
Reaction Rate of FNG_Tungsten

- For the reaction rates calculated by SuperMC comparing with experimental results, the average deviation was about 5%.
Other benchmark experiment

◆ IPPE_Th
◆ KANT-Be
Neutron leakage flux of IPPE Th

- For the neutron leakage flux calculated by SuperMC comparing with experimental results, the average deviation was about 10%, and the maximum deviation was in the energy region from 10 MeV to 12 MeV.
- Note: In the report “THE QUALITY ASSESSMENT OF THE IPPE BENCHMARK EXPERIMENTS—IJS-DP-10217”, the deviation between calculation results and experimental results were about 30% in the energy ranges from 0.1 MeV to 1 MeV.
For the neutron leakage flux calculated by SuperMC comparing with experimental results, the average deviation was about 8%.
Contents

1. Introduction
2. Experimental Platforms and Summary of Benchmarks
3. Calculation Results
4. Summary
Summary

◆ For the neutron/gamma flux, the average deviation between SuperMC calculation result and experimental result was less than 15% for most benchmark cases.

◆ For dosimetry reaction rate, the average deviation between SuperMC calculation results and experimental results was less than 5%.

◆ The global weight window, which is be produced expediently by GWWG in SuperMC, can be efficient to reduce the statistical errors associated with computing the global or the multi-zones thick blankets in fusion devices (for example, in term of FOM, it achieved speed-up by ~145 times for case of FNS-DUCT).