



# Status of the Nuclear Data Sensitivity Tool (NDaST)

# lan Hill

## **Division of Nuclear Science and Education**

#### WPEC SG46 March 15<sup>th</sup> 2022

© 2022 Organisation for Economic Co-operation and Development





#### What Is NDaST?

 Some java code resulting in a GUI that connects nuclear data (JANIS) to integral experiments (DICE, IDAT, SINBAD, NEA Benchmarks).

https://www.oecd-nea.org/ndast



**Industrial engineering:** is a branch of <u>engineering</u> which deals with the optimization of complex <u>processes</u>, <u>systems</u>, or <u>organizations</u>. **Industrial engineers** work to eliminate waste of time, money, materials, person-hours, machine time, energy and other resources that do not generate value. According to the <u>Institute of Industrial and Systems Engineers</u>, they create engineering processes and systems that improve quality and productivity.<sup>[1]</sup>





#### Nuclear Data Sensitivity Tool (NDaST) Flowchart

Benchmarks (Sensitivities)  $\rightarrow$  Nuclear Data (% Change or Covariance)  $\rightarrow$  Integral Results









#### **Sensitivity Profiles Available [DICE + IDAT]**

| Handbook<br>Edition | Number of<br>Unique Cases | Sources                                                |
|---------------------|---------------------------|--------------------------------------------------------|
| 2012                | 727                       | TSUNAMI1D+TSUNAMI3D [VALID]+MMK-KENO                   |
| 2013                | 3575                      | Previous +Non VALID cases SCALE6.0 from Balance Inputs |
| 2014                | 4011                      | Previous + MCNP6 + SCALE6.2BClutch                     |
| 2015                | 4065                      | Previous + New Cases                                   |
| 2016                | ~4200                     | Previous + New Cases + P1 Sensitivities [~400 cases]   |
| 2017                | ~4200                     | Previous+P1 Sensitivities [~700 cases]                 |
| 2017                | ~600                      | IDAT Sensitivities [Waiting input +Code GPT]           |

• Sensitivity dot product to characterise similarity.

#### **Covariance Data Available [JANIS]**

- All major libraries have BOXER files with MF32/MF33 processed. (~30 libraries with covariances, ~40 libraries)
- Users can add MF31. In the future these will be available
- No MF34. Will come in the future.
- Supports user entered BOXER / COVERX files
- Supports some versions of the SCALE covariance library





#### Load Own Covariance

| 🥔 Open       |                                                                                                                                                                                                                                                                                             |                                                                            | × |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|
| Look in:     | : BOXER-ENDFB7.1-238g ~                                                                                                                                                                                                                                                                     | 🦻 📂 🛄 •                                                                    |   |
| Recent Items | ac225.boxer       b11.boxer       cf246.boxer       cm243.boxer         ac226.boxer       be9.boxer       cf248.boxer       cm244.boxer         ac227.boxer       bi209.boxer       cf249.boxer       cm245.boxer         ag109.boxer       bk245.boxer       cf250.boxer       cm246.boxer | r cr53.boxer<br>r cs133.boxer<br>r cs135.boxer<br>r er166.boxer            |   |
| Desktop      | al27.boxer bk246.boxer cf251.boxer cm247.boxer am240.boxer bk247.boxer cf252.boxer cm248.boxer                                                                                                                                                                                              | r er167.boxer<br>r er168.boxer                                             | Γ |
| Documents    | am241.boxerbk248.boxercf253.boxercm249.boxeram242m.boxerbk249.boxercf254.boxercm250.boxeram243.boxerbk250.boxercm240.boxerco59.boxerau197.boxerc0.boxercm241.boxercr50.boxerb10.boxerce141.boxercm242.boxercr52.boxer                                                                       | r er170.boxer<br>r s251.boxer<br>es252.boxer<br>es253.boxer<br>es254.boxer |   |
| This PC      | <                                                                                                                                                                                                                                                                                           |                                                                            | > |
| Network      | File name:         Files of type:         All supported files (*.endf; *.pendf; *.hendf; *.boxer; *.coverx;                                                                                                                                                                                 | *.zip; *.gz; *.gzip) ~                                                     | ] |





#### **DICE+IDAT With Proposed 7 Group Structure**

BETTER POLICIES FOR BETTER LIVES







#### Linking to representative benchmarks from various application







#### Nuclear Energy Agenc Recover Astrone



OPEN

| April 2015-2                                                                                             | 2017 Have I see                                                                                | it before Decomposition of the second | rison of uncertainty propagation techniques using<br>full, half or zero Monte Carlo?<br>an Hill, Luca Fiorito, Oscar Cabellos, and Nicolas Soppera <sup>®</sup><br>Anergy Agency, Boulogne-Billancourt, France<br>ved 23 October 2017 / Received in final form: 18 January 2018 / Accepted: 4 May 2018 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <u>JEF/DOC-1840</u>                                                                                      | JEFF-3.3T13 Processed Covaria<br>Propagation Analysis and Cor                                  | ances: Uncertainty<br>nparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J. Dyrda, O. Cabellos                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| <u>JEF/DOC-1789</u>                                                                                      | CIELO Pu-239 data testing wit                                                                  | h NDAST tool, Ian HILL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NEA                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| <u>JEF/DOC-1772</u>                                                                                      | DOC-1772 JEFF-3.3T1 processed covariances : uncertainty propagation analy comparison, J. Dyrda |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| JEF/DOC-1759                                                                                             | JEFF-3.3-T1 processed covariance comparison, J. Dyrda                                          | ces: uncertainty propagation, analysis and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| <u>JEF/DOC-1727</u>                                                                                      | Use of the NDaST tool for Benc                                                                 | hmarking and Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n, J. Dyrda                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| JEF/DOC-1639                                                                                             | Development of a new Nuclear                                                                   | <sup>r</sup> Data Sensitivity tool at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NEA, J. Dyrda                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| <ul> <li>Used for CIE</li> <li>Presented at I</li> <li>Presented at I</li> <li>Presented at I</li> </ul> | LO<br>NCSP2017 Annual Meeting<br>WONDER2018<br>ND2018                                          | EPJ Web of Conferences 14<br><u>ND2016</u><br>with a feedback loop lear<br>reaction model parameter<br>data files. Nuclear react<br>for coupled channels, so<br>and R-matrix, continue<br>is also starting to under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6, 02001 (2017)<br>ading to the optimization of the<br>rs and ultimately of the evaluated<br>ion theory and modeling codes<br>statistical reactions and fission,<br>to be refined. The community<br>rstand the benefits, and use of                                                                    |  |  |  |  |  |
| • Presented at A                                                                                         | ANS2018                                                                                        | sensitivity tools such as<br>focus research efforts.<br>NEA/WPEC Subgroup 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NEA's NDaST codes to help<br>so, various insights from the<br>adjustment project have been                                                                                                                                                                                                             |  |  |  |  |  |

And as parts of other presentations, example:

jefdoc-<u>1991</u>

Feedbacks on JEFF-3.3 Evaluation

useful.

| Oscar    | UPM | Spain | April |
|----------|-----|-------|-------|
| Cabellos |     |       | 2020  |





# NDaST fast, and keeps getting faster

JEFF3.3 test set (146 cases for 54 covariance files) runs in under 1 minute. Previously 20-30 minutes.

Some changes included:

- Discarding zones in sensitivity profiles
- Discarding sensitivity nuclide reactions with 0's.
- Using a custom binary format to optimise compression and transfer





### **NDaST: Automated JANIS Computations**

- An automated link has been introduced to the JANIS nuclear data software to generate the perturbation ratios between two evaluations.
- Represented within any energy group structure required.
- Analytical or personal spectrum weightings may also be applied



| 1 | Group structu  | ire                                                               |                          | 🥏 NDaST               |                    |
|---|----------------|-------------------------------------------------------------------|--------------------------|-----------------------|--------------------|
|   | Group type :   | Uniform in log 🗸                                                  |                          | File Databases Window | / Help             |
| 1 | Lower energy : | Uniform in log<br>File defined<br>Single group                    | in eV                    | IDAT=HTTP             | jdev ) IDAT search |
| 1 | Upper energy : | 2.0E7                                                             | in eV                    | JANIS=(4)             | JENDF              |
| 5 | Subdivision :  | 10.0                                                              | in groups/decad          | Sensitivities         | V NEA<br>V JEFF    |
|   | Spectrum       |                                                                   |                          |                       |                    |
|   | Spectrum typ   | De : PWR spectrum                                                 | •<br>1                   |                       |                    |
|   | Emax,th :      | 0.1 PWR spectrum                                                  | heta,th :                | 0.054                 | in eV              |
|   | Emax,epi :     | General spectrum<br>210<br>Maxwellian spectru<br>Fission spectrum | <sub>um</sub> heta,fis : | 1400000.0             | in eV              |

 <u>Multiple perturbations of the same</u> <u>nuclide-reaction</u> can now be input for faster comparison with one single run
 NDaST now has a <u>'file upload'</u> <u>feature</u>, to avoid needing to already have libraries held in a JANIS base.





#### Half Monte Carlo Method (HMM) Results



 $k_{eff}$  distribution, sorted lowest  $k_{eff}$  to highest, plotted with the HMM  $k_{eff}$ predictions for 20 samples and full automated set

Example breakdown by reaction for 20 sample cases

|           | Delta keff (pcm) |       |      |      |      |     |      |      |      |      |      |      |       |       |      |       |      |      |      |      |
|-----------|------------------|-------|------|------|------|-----|------|------|------|------|------|------|-------|-------|------|-------|------|------|------|------|
|           | Case N           | umber |      |      |      |     |      |      |      |      |      |      |       |       |      |       |      |      |      |      |
|           | 24               | 34    | 38   | 170  | 431  | 436 | 455  | 476  | 494  | 527  | 558  | 591  | 643   | 670   | 680  | 710   | 738  | 772  | 782  | 993  |
| Elastic   | 606              | -217  | -157 | -441 | 513  | 59  | -520 | 59   | 216  | -47  | 606  | -222 | -490  | -348  | 42   | 364   | 629  | -481 | 393  | -253 |
| Inelastic | 110              | 252   | -19  | 75   | -190 | 139 | 119  | 132  | 384  | -9   | -130 | 219  | 1     | -206  | 81   | -192  | 69   | -14  | -143 | -45  |
| N,2N      | -3               | -1    | -4   | -3   | -4   | 1   | -6   | 1    | 2    | -6   | -3   | -4   | -3    | -3    | -4   | -4    | -1   | -6   | -7   | 2    |
| Fission   | -800             | 120   | 780  | 566  | 1488 | 486 | -272 | 485  | -877 | 16   | 827  | -940 | -974  | -537  | 541  | -1258 | -767 | 314  | -486 | -367 |
| N,Gamma   | -29              | 3     | 13   | 22   | 19   | -30 | -27  | -30  | 10   | -18  | -22  | -10  | 21    | -42   | -51  | -28   | -22  | 23   | 5    | 34   |
| nubar     | -249             | 113   | 126  | -27  | 610  | 225 | -175 | -48  | -189 | 138  | -221 | 272  | -428  | -2    | -230 | 315   | 482  | -200 | 221  | 207  |
| Chi       | 144              | -129  | -187 | -219 | -254 | -15 | -62  | -129 | -76  | -130 | 111  | -208 | -117  | -154  | 130  | -61   | 55   | 59   | 95   | 1    |
| Total     | -221             | 141   | 552  | -27  | 2183 | 865 | -943 | 470  | -530 | -56  | 1170 | -893 | -1989 | -1291 | 508  | -864  | 444  | -305 | 79   | -421 |

© 2022 Organisation for Economic Co-operation and Development





#### **Delta k<sub>eff</sub> Distributions by Reaction**

| Contraction of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C Descharted Model : NO<br>C Descharted Model : NO<br>C Descharted Sectors<br>C Descharted Sec | are unarrented to the second s | tic       | A Second Se | • • • • • • • • • • • • • • • • • • • | Penutators  |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|----------|----------|
| Contraction to the last of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C Protection Con Declared Model - NO.<br>CC Protection Declared Model - NO.<br>CC Protection Control - No.<br>CC Protection Contrelation Control - No.<br>CC Protection Control - No.<br>CC Protection C                                               | n,gan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nma       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nuba                                  | Punutations |          |          |
| PAR001001 (Detailed Model) - NDAT     Control (Control (Contro) (Control (Control (Contro) (Control (Contro) (Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | elastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | inelastic | n,2n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fission                               | n,gamma     | nubar    | chi      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.00004  | -0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.00064                              | 0.00001     | -0.00002 | -0.00046 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | St. dev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00145   | 0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00648                               | 0.00025     | 0.00238  | 0.00093  |
| 4 89125<br>4 89175<br>4 89175<br>4 8025<br>4 8055<br>4 8055<br>4 8055<br>4 8055<br>4 8055<br>4 8055<br>4 8055<br>4 8 | Skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.34519   | 0.11337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05432                               | -0.17265    | 0.18915  | -0.03932 |
| detail     detail     detail     detail     detail     detail     Perturbations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kurt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.20829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10658   | -0.45525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.38844                              | -0.60157    | 0.02513  | -0.22921 |





#### **New Functionality to Search Covariance Data**



Looks through all the sensitivities and provides a list of which isotopes/reactions reactions have 'high' sensitivities User can select top X

Based on priority list, NDaST will retrieve a covariance file for each selected isotope/reaction.





### **Analytic Covariance**



Taken from:

Herranz, Nuria & Cabellos, O. & Sanz, Javier & Juan, Jesus. (2008). Impact of different correlation structures in crosssection covariance matrices on the inventory and inventoryrelated parameters.







## NDaST can compute c(k) and they are dynamic

#### 🥖 Results - NDaST

File

| Case by case | Representativity values (Ck) |                |             |            |            |            |            |            |              |
|--------------|------------------------------|----------------|-------------|------------|------------|------------|------------|------------|--------------|
| Filter       |                              |                | HMI006-001  | HMI006-002 | HMI006-003 | HMI006-004 | MMF001-001 | SMF008-001 | SMF008-001 ( |
| Filter       |                              | HMT006-001 KE  | 1           | 0 0037     | 0 9711     | 0 024      | 0 3072     | 0.566      | 0.566        |
|              | des / Reactions              | HMI006-002 KE  | -<br>0.9937 |            |            |            | 0.3274     | 0.5968     | 0.5968       |
| I ≞ ⊠ H      | 1                            | HMI006-003 KE  | 0.9711      |            |            |            | 0.3562     | 0.6331     | 0.6331       |
| I ≞ ⊠ H      | 2                            | HMT006-004 KE  | 0.924       |            |            |            | 0.409      | 0.6815     | 0.6815       |
|              | Nat                          | MMF001-001 M   | 0.3072      | 0.3274     | 0.3562     | 0.409      | 1          | 0.6335     | 0.6335       |
| L H Y        | 16                           | SMF008-001 (D  | 0.566       | 0.5968     | 0.6331     | 0.6815     | 0.6335     | 1          | 1            |
|              | - 222                        | SMF008-001 (Si | 0.566       | 0.5968     | 0.6331     | 0.6815     | 0.6335     | 1          |              |
| I # H.       | 1232                         |                |             |            |            |            |            |            |              |
| I # H.       | 233                          |                |             |            |            |            |            |            |              |
|              |                              |                |             |            |            |            |            |            |              |
| Ě            |                              |                |             |            |            |            |            |            |              |
| Ě            |                              |                |             |            |            |            |            |            |              |
| Ě            |                              |                |             |            |            |            |            |            |              |
|              |                              |                |             |            |            |            |            |            |              |
|              |                              |                |             |            |            |            |            |            |              |
| Ě            |                              |                |             |            |            |            |            |            |              |
| Ě            | INCLASTIC                    |                |             |            |            |            |            |            |              |
| Ě            |                              |                |             |            |            |            |            |            |              |
|              |                              |                |             |            |            |            |            |            |              |
|              | µ237                         |                |             |            |            |            |            |            |              |
|              | u239                         |                |             |            |            |            |            |            |              |
|              | hmarks calculations          |                |             |            |            |            |            |            |              |
|              | itivitios calculations       |                |             |            |            |            |            |            |              |
|              | NO APPN-02 / 200-Croup       |                |             |            |            |            |            |            |              |
|              | NO ENDE/B-VII 0 / 238-Croup  |                |             |            |            |            |            |            |              |
|              | ENO ENDE/B-VII O Continuous  |                |             |            |            |            |            |            |              |
|              | CND ENDE/B-VI Continuous     |                |             |            |            |            |            |            |              |
| <b>™</b>     |                              |                |             |            |            |            |            |            |              |





# **Command Line: Potential to implement in** pipeline

#### Current:

```
Usage: <input> <output> [OPTIONS]...
   <input> : NDaST file with input parameters (sensitivities plus and/or covariances)
    <output> : NDaST file with input parameters and calculation results
  Options:
    -a. --quiet
                       : suppress all messages except errors
    -od, --off-diagonal : compute off-diagonal terms (cases/sensitivities representativity,
aka 'Ck')
   -f, --force : allow overwriting output file
```

#### To be implemented (2022):

- Numerator and denominator, being either JANIS references or "file" references
  - group structure for ratios
  - Weighting spectrum for ratios

NDaST is a combination of GUI tools, not surprisingly its first port of call wasn't to be designed for pipelines that didn't/don't exist.

GUI tools have been necessary to trouble shoot suspicious results. Linear perturbation theory, and the number of options depending on the exact code/library/benchmarks/covariance isn't a oiled machine.





#### **Energy Dependence Breakdown**







### Conclusion

- Lots of potential for NDaST to integrate with other data sources, tools.
- Complexity is still an issue.
- Look for more training resources in 2022.

The person power for NDaST is extremely low, 0.2 FTE, and 70 % of this is simple maintenance (ensure compatibility with JANIS, DICE, IDAT) and outreach (such as this presentation).

Contact: <a href="mailto:ndast@oecd-nea.org">ndast@oecd-nea.org</a>