

Nuclear data assessment for non-LWRs with SCALE

F. Bostelmann, G. Ilas, W. A. Wieselquist Oak Ridge National Laboratory

WPEC Meeting of Subgroup 46 on the Efficient and Effective Use of Integral Experiments for Nuclear Data Validation

March 15, 2022

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Nuclear data performance assessments for non-LWR

- Project goal: Identification of key nuclear data and nuclear data uncertainties for the analysis of key metrics for reactor safety of non-LWRs
- Relevant non-LWRs designs:
 - Heat pipe reactor (HPR): INL Design A
 - High temperature gas-cooled reactor (HTGR): HTR-10
 - Molten salt reactor (MSR): MSRE
 - Fluoride salt-cooled HTR (FHR): UC Berkeley PB-FHR Mark 1
 - Sodium-cooled fast reactor (SFR): MET1000 and EBR-II
- Approach:
 - Identify data gaps in nominal and uncertainty data based on literature review and previous ORNL studies
 - Interrogate ENDF/B-VII.0, VII.1 and VIII.0 libraries to identify relevant updates in nominal values and uncertainties
 - Propagate uncertainties to key figures of merit relevant of reactor safety
- Results: F. Bostelmann, G. Ilas, C. Celik, A. M. Holcomb, W. A. Wieselquist (2021), "Nuclear Data Assessment for Advanced Reactors", NUREG/CR-7289, <u>https://www.nrc.gov/docs/ML2134/ML21349A369.pdf</u>

CAK RIDGE National Laboratory

Example 1: FHR – UC Berkeley Pebble-bed FHR

- Pebble-bed fluoride salt-cooled high temperature reactor
- Preconceptual design for a small, modular 236 MWth reactor developed by the University of California, Berkeley
- Relevant characteristics:
 - Fuel: TRISO particles with UCO fuel kernels
 - Coolant: FLiBe salt
 - Moderator: graphite

UC Berkeley PB-FHR

Ref.: C. Andreades et al., "Technical Description of the "Mark 1" Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor (PB-FHR) Power Plant," Berkeley, CA, UCBTH-14-002, 2014.

TRISO particle and FHR fuel pebble

FHR: Modeling with SCALE

- Neutron transport: KENO-VI Monte Carlo
- Uncertainty analysis: Sampler (sample size: 1,000)
- Cross section library: 252-group
- Covariance library: 56-group
- Quantities of interest:
 - Multiplication factor k_{eff}
 - Fuel temperature reactivity (ΔT =500K)
 - Salt temperature reactivity (ΔT =300K)
 - Salt density reactivity (density x1.5)
 - Axial power distribution

SCALE model of the UCB FHR

FHR: Effect of cross sections on nominal reactivity values

Quantity	ENDF/B-VII.1	ENDF/B-VIII.0	∆ ρ [pcm]
k _{eff}	0.94091 ± 0.00008	0.94368 ± 0.00021	312 ± 25
Fuel temp. reactivity	-776 ± 12	-745 ± 34	30 ± 36
Salt temp. reactivity	-363 ± 11	-373 ± 36	-10 ± 38
Salt density reactivity	-1071 ± 12	-1015 ± 44	56 ± 45

Reactivity difference between libraries are due to changes in relevant cross sections including ²³⁵U and ²³⁸U.

Difference: ENDF/B-VIII.0 vs. ENDF/B-VII.1

5

FHR: Uncertainties in reactivity due to nuclear data uncertainties

Quantity	ENDF/B-VII.1	ENDF/B-VIII.0	Rel. difference
k _{eff}	1.38%	1.43%	3.60%
Fuel temperature reactivity	3.11%	2.79%	-10.17%
Salt temperature reactivity	5.54%	7.13%	28.68%
Salt density reactivity	35.65%	36.80%	3.22%

- Uncertainties due to nuclear data vary significantly between libraries.
- Both absolute and relative uncertainty must be considered:
 - 1.4% uncertainty in k_{eff} corresponds to ~1,300 pcm
 - 36% uncertainty in the salt density corresponds to ~130 pcm

FHR: Power distribution and uncertainty

CAK RIDGE National Laboratory

FHR: Top contributors to uncertainty

8

• The uncertainty in many quantities obtained for the FHR can be largely reduced if this uncertainty is reduced.

Nuclear data assessment for FHR

~50% difference

~15% difference

- Key nominal data: ٠
 - $\bar{\nu}$, fission, and the (n, γ) reaction of the major fissile isotopes ²³⁵U, ²³⁹Pu, and ²⁴¹Pu.
 - ⁶Li (n,t): significant cross section update from ENDF/B-— VII.0 to ENDF/B-VII.1
 - Carbon (n,γ) : significant cross section update from _ ENDF/B-VII.0 to ENDF/B-VII.1
- Nuclear data uncertainties: •
 - Large uncertainty of ⁷Li (n, γ) is the dominating _ contributor to most reactivity effects considered here
 - Gap identified in availability of uncertainty data for thermal scattering data for both graphite and FLiBe

Example 2: SFR – Experimental Breeder Reactor II

- Operated by Argonne National Laboratory (now on the site of Idaho National Laboratory) between 1964 and 1994
- Evaluation of EBR-II run 138B, a test within the Shutdown Heat Removal Tests series conducted on 3 April 1986, was recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments
- Measured data is limited to k_{eff}
- Relevant characteristics:
 - Fuel: high enriched uranium fuel and depleted uranium blanket assemblies
 - Coolant: sodium
 - Structure: steel

CAK RIDGE National Laboratory

EBR-II core

E. S. Lum, et al., Evaluation of Run 138B at Experimental Breeder Reactor II, a Prototypic Liquid Metal Reactor; EBR2-LMFR-RESR-001, CRIT, NEA/NSC/DOC(2006)1; OECD/NEA, 2018.

SFR: Modeling with SCALE

- Neutron transport: KENO-VI Monte Carlo
- Uncertainty analysis: TSUNAMI and Sampler (sample size: 500)
- Cross section library: continuous-energy and 302-group
- Covariance library: 56-group
- Quantities of interest:
 - Multiplication factor k_{eff}
 - Control rod worth
 - Sodium void worth

SFR: Nominal reactivity values

	k _{eff}	∆k [pcm]
Benchmark*	1.00927 ± 0.00618	(ref)
ENDF/B-VII.1	1.00703 ± 0.00016	-224 ± 618
ENDF/B-VIII.0	1.00704 ± 0.00019	-223 ± 618

Comparison calculation to measurement

Impact of nuclear data evaluation

	ENDF/B-VII.1	ENDF/B-VIII.0	∆p [pcm]
k _{eff}	1.00703 ± 0.00016	1.00704 ± 0.00019	1 ± 25
CR worth [pcm]	4728 ± 26	4728 ± 25	0 ± 36
Na void [pcm]	-4651 ± 18	-4681 ± 29	-29 ± 34

- All calculated results agree with measured k_{eff} considering benchmark uncertainty.
- Differences between ENDF/B-VII.1 and ENDF/B-VIII.0 results negligible.

SFR: Uncertainties in reactivity due to nuclear data uncertainties

	ENDF/B-VII.1	ENDF/B-VIII.0	Rel. difference
k _{eff}	2.16%	1.01%	-53.0%
CR worth	1.18%	1.26%	6.8%
Na void	5.15%	4.21%	-18.3%

Significantly reduced k_{eff} uncertainties in ENDF/B-VIII.0.

CAK RIDGE National Laboratory

13

SFR: Top contributors to reactivity uncertainties

14

Nuclear data assessment for high ²³⁵U enriched SFR

- Key nominal data:
 - Fission, (n, γ), scattering, and $\bar{\nu}$, of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, and ²⁴¹Pu
 - The scattering and (n, γ) reactions of ^{56}Fe as part of the structural material and ^{23}Na as the coolant
- Nuclear data uncertainties:
 - Large uncertainty of ²³⁵U (n,γ) is the dominating contributor to most reactivity effects considered here
 - Note: for SFRs containing mixed U/Pu fuel, the ²³⁸U inelastic scattering update from ENDF/B-VII.1 to ENDF/B-VIII.0 plays a major role.
 - Gap identified in availability of uncertainty data for angular scattering distributions

Key observations for all studied non-LWRs

• All non-LWRs:

 Large differences between ENDF/B library releases for relevant nominal and uncertainty data: neutron multiplicity, fission, capture, scattering for ²³⁵U, ²³⁸U, major Pu isotopes

• FHR:

16

- No graphite thermal scattering data uncertainties
- No thermal scattering data for salts
- Carbon (n,γ): significant update from ENDF/B-VII.0 to VII.1
- Large ⁷Li (n, γ) uncertainty
- ⁶Li (n,t): significant cross section update from ENDF/B-VII.0 to VII.1

• HPR and SFR:

National Laboratory

- No angular scattering uncertainties
- Large 235 U (n, γ) uncertainty for HEU fuel
- Large ²³⁸U inelastic scattering uncertainty in case of U/TRU fuel
- Large impact of scattering reactions of coolant and structural materials
 KOAK RIDGE

• HTGR:

- Carbon (n, γ): significant update from ENDF/B-VII.0 to VII.1
- No graphite thermal scattering data uncertainties

• Graphite-moderated MSR:

- No data for ^{135m}Xe
- No thermal scattering data for salts
- No graphite thermal scattering data uncertainties
- Large ⁷Li (n, γ) uncertainty
- ⁶Li (n,t): significant cross section update from ENDF/B-VII.0 to VII.1

• Fast spectrum MSR:

- ³⁵Cl (n,p): significant cross section update from ENDF/B-VII.0 to VII.1
- Large impact of ²⁴Mg elastic scattering uncertainty

Also many lessons were learnt for the application of our UQ/SA tools in full core analyses.

SCALE tools for nuclear data sensitivity and uncertainty analysis – Updates in SCALE 6.3

- TSUNAMI-3D enabled with the new Monte Carlo code Shift:
 - IFP method
 - Implemented to work in parallel (large memory footprint divided between processors)
- Sampler includes a new **analysis** block that enables the calculation of:
 - Pearson correlation coefficients and covariances between responses
 - Correlation and covariance matrices between responses
 - Sensitivity index R² for a list of provided nuclides
- ORIGEN sensitivity capability:
 - New sens block within the ORIGEN input
 - Determine the change in a particular nuclide or group of nuclides to all nuclear data involved in the calculation
 - Automatic direct perturbation cases to verify sensitivities

References and acknowledgements

- Support for this work was provided by the US NRC
- References for models and results: <u>https://www.ornl.gov/scale/references</u>
- Public repository of input files: <u>https://code.ornl.gov/scale/analysis/non-lwr-models-vol3</u>
- Major publications based on the presented project:
 - F. Bostelmann, G. Ilas, C. Celik, A. M. Holcomb, W. A. Wieselquist (2021), "Nuclear Data Assessment for Advanced Reactors", NUREG/CR-7289, <u>https://www.nrc.gov/docs/ML2134/ML21349A369.pdf</u>
 - F. Bostelmann, S. E. Skutnik, E. Walker, G. Ilas, and W. A. Wieselquist (2021), "Modeling of the Molten Salt Reactor Experiment with SCALE," Nucl. Technol. doi:<u>10.1080/00295450.2021.1943122</u>
 - F. Bostelmann, G. Ilas, and W. A. Wieselquist (2021), "Nuclear Data Sensitivity Study for the EBR-II Fast Reactor Benchmark Using SCALE with ENDF/B-VII.1 and ENDF/B-VIII.0," J. Nucl. Eng., 2(4), 345–367. doi:<u>10.3390/jne2040028</u>

Backup

Example 1: FHR – UC Berkeley Pebble-bed FHR

- Pebble-bed fluoride salt-cooled high temperature reactor
- Preconceptual design for a small, modular 236 MWth reactor developed by the University of California, Berkeley
- No operating experience with this type of FHR reactor
- Relevant characteristics:
 - Fuel: TRISO particles with UCO fuel kernels
 - Coolant: FLiBe salt
 - Moderator: graphite

TRISO particle and FHR fuel pebble

Technical details: C. Andreades et al., "Technical Description of the "Mark 1" Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor (PB-FHR) Power Plant," Berkeley, CA, UCBTH-14-002, 2014. Figure: http://fhr.nuc.berkeley.edu/wp-content/uploads/2014/10/PEBBLE-SCHEMATIC-V2.png

Example 1: FHR – UC Berkeley Pebble-bed FHR

Description	Value
Reactor power	236 MWth
UCO fuel density	10.5 g/cc
Uranium enrichment	19.9 wt.%
Fuel kernel radius	0.2 mm
Number of particles in pebble	4,730
Particle packing fraction in fuel pebble	40%
Radius of fuel pebble	1.5 cm
Inner/outer radius of fuel zone	1.25/1.40 cm
Number of fuel pebbles	470,000
Number of unfueled/graphite pebbles	218,000
Pebble packing fraction	60%
Core Inner reflector radius	35 cm
Outer fuel pebble region radius	105 cm
Outer graphite pebble region radius	125 cm
Volume of active fuel region	10.4 m ³
Average pebble thermal power	500 W
Average pebble discharge burnup	180 GWd/MTIHM
Average pebble full-power lifetime	1.40 years

UC Berkeley PB-FHR

21

SFR: Main characteristics

Description	Value
Reactor power	62 MWth
Fuel material	high enriched uranium metal
Coolant material	sodium
Major structural material	steel
Temperature of all materials (K)	616
Number of fuel assemblies in the core:	
Full worth	70
Half worth	13
Number of fuel pins per assembly	91
Number of depleted uranium blanket assemblies	330
Assembly pitch (cm)	6.8877
Outer fuel radius (cm)	0.1651
Outer cladding radius (cm)	0.2210
Inner cladding radius (cm)	0.1905
Fuel pin pitch (cm)	0.566
Active core height (cm)	34.6075

EBR-II fuel assembly

E. S. Lum, et al., Evaluation of Run 138B at Experimental Breeder Reactor II, a Prototypic Liquid Metal Reactor; EBR2-LMFR-RESR-001, CRIT, NEA/NSC/DOC(2006)1; OECD/NEA, 2018.

