

Universidad Politécnica de Madrid E.T.S de Ingenieros Industriales

UPM contribution on sensitivity analysis for LWR SMR: NuScale

A. Jiménez-Carrascosa, L. Durán-Vinuesa, O. Cabellos, N. García-Herranz

Department of Energy Engineering Universidad Politécnica de Madrid (UPM), Spain

Meeting of the OECD/NEA WPEC-SG46 15 March 2022

Outline

1. Introduction

- 2. Computational tools
- 3. Models: NuScale SMR core
- 4. Sensitivity analysis

5. Summary

1. Introduction

- A gap was identified at previous WPEC/SG46 meetings concerning sensitivity analyses for advanced LWR/SMRs.
- An LWR/SMR NuScale model has been developed based on open specifications.
- We are ready to provide sensitivities for this model so that it can be included on the subsequent TAR assessment.

2. Computational tools

• SCALE 6.2.3

- TSUNAMI-3D continuous energy (CE) as reference module
 - Linear perturbation theory
 - Transport solver KENO-VI
 - Eigenvalue sensitivities: CLUTCH
 - AMPX-formatted CE JEFF-3.3 cross section data
 - Sensitivities provided into the SCALE 252g structure (.sdf file)
 - Sensitivities to angular scattering distributions are not computed
 - Covariance data: SCALE6.3-56g (ENDF/B-VIII.0 based) and JEFF-3.3

3. Models: NuScale SMR core

NuScale SMR core: loading pattern

- 160 MWth light-water cooled small modular reactor
- UO₂ fueled core
- 6 fuel assembly types (Suk et al., 2021)
 - 4 poison-free FA (UXXX)
 - 2 FA with 8 Gd pins (GXX)
- BOL HFP averaged conditions $(k_{eff} \simeq 1.00000)$
 - $\rho = 0.796 \text{ g/cm}^3$
 - T_{mod} = 531.5 K
 - T_{fuel} = 700 K
 - C_{boron} = 1413 ppm

FA ID %U235 %U235,%Gd			U360 3.60	G31 3.60 1.5,3.0	U360 3.60		
		U270 2.70	G21 2.70 1.8,2.5	U205 2.05	G21 2.70 1.8,2.5	U270 2.70	
	U360 3.60	G21 2.70 1.8,2.5	U205 2.05	U205 2.05	U205 2.05	G21 2.70 1.8,2.5	U360 3.60
	G31 3.60 1.5,3.0	U205 2.05	U205 2.05	U195 1.95	U205 2.05	U205 2.05	G31 3.60 1.5,3.0
	U360 3.60	G21 2.70 1.8,2.5	U205 2.05	U205 2.05	U205 2.05	G21 2.70 1.8,2.5	U360 3.60
		U270 2.70	G21 2.70 1.8,2.5	U205 2.05	G21 2.70 1.8,2.5	U270 2.70	
			U360 3.60	G31 3.60 1.5,3.0	U360 3.60		

UO₂ FA

Core loading pattern

Suk, P., et al., (2021). Simulation of a NuScale core design with the CASL VERA code. Nuclear Engineering and Design, 371, 110956.

3. Models: NuScale SMR core

NuScale SMR core: reflector modelling

- Active height: 2 m
- Simplified upper and lower reflector
 - 20 cm height
 - Water (no fuel rod plenum)
- Radial reflector layers (Burrell et al., 2019)
 - Baffle (SS304): 2.8 cm thick
 - Water-gap: 0.1 mm thick
 - Heavy reflector (SS304): 93.98 cm radii
 - Core barrel (SS304): 5.12 cm thick
 - Water pool: cuboid

Burrell, M., et al., (2019). Equilibrium Core Design of a NuScale Designed Small Modular Reactor Using CASL's Virtual Environment for Reactor Applications (VERA). Transactions of the American Nuclear Society - Volume 121, 127-129.

3. Models: NuScale SMR core

NuScale SMR core: KENO-VI model – 3D heterogeneous model

Durán-Vinuesa, L.F., et al., (2022). NuScale Spectrum of Rod Ejection Accidents at BOL Simulated using COBAYA4-CTF, In Proceedings of 19th Int. Top. Meeting on Nuclear Reactor Thermal-hydraulics (NURETH-19), Brussels, Belgium, March 6-11, 2022.

4. Sensitivity results

Sensitivity results for multiplication factor

Top-10 energy, region and mixture – integrated sensitivity coefficients for multiplication factor ranking

4. Sensitivity results

Energy-dependent sensitivities collapsed into the SCALE 252-group structure

Energy-dependent sensitivities collapsed into the 7-group structure suitable for the TAR exercise

4. Sensitivity results

Sensitivity results for multiplication factor (7g)

4. Sensitivity results: uncertainty quantification

	Response	TAR	Uncert	Uncertainty [%] 56g SCALE6.3 ENDF/B-VIII.0			
Reactor		WPEC/SG46 [%]	7g JEFF-3.3				
NuScale	k-eff	0.3	0.698 ±	1.1E-04	0.567	<u>+</u>	3.5E-05

Target accuracy exceeded!

	JEFF-3.3					SCALE6.3 (ENDF/B-VIII.0)				
Reac	tion	∆k/k (%)		Std. Dev.	Reaction	∆k/k (%)		Std. Dev.		
²³⁵ U n	ubar	0.52	±	4E-05	²³⁵ U nubar	0.43	±	1E-05		
²³⁵ U (n,γ)	0.23	±	3E-06	²³⁸ U (n,γ)	0.20	±	1E-06		
²³⁵ U	(n,f)	0.22	±	2E-05	²³⁵ U (n,f)	0.17	±	8E-06		
²³⁸ U (n,γ)	0.21	±	4E-06	¹ H (n,n)	0.16	±	3E-05		

4. Sensitivity results: preliminary TAR assessment

TAR accuracy requirement on top-10 most important reactions: ENDF/B-VIII.0 (Correlations included)									
Rank #	Reaction	Energy group	Current [%]	Target [%]	Rel. Unc. Reduction [%]				
1	²³⁵ U nubar	7	0.5	0.2	69.2				
2	²³⁸ U (n,γ)	7	1.1	0.5	7.9				
3	²³⁵ U (n,f)	7	0.5	0.3	6.6				
4	²³⁸ U (n,γ)	6	1.4	0.7	4.5				
5	²³⁸ U (n,γ)	5	1.6	0.9	3.2				
6	²³⁵ U nubar	5	1.3	0.8	3.1				
7	¹⁶ O (n,n')	1	265.2	89.3	1.6				
8	²³⁸ U (n,n)	5	3.9	1.2	0.7				
9	²³⁸ U (n,f)	1	1.2	0.5	0.5				
10	²³⁵ U (n,γ)	7	0.9	0.8	0.4				

TAR NuScale k-eff value: 300 pcm

5. Summary

- A gap was identified at previous WPEC/SG46 meetings concerning sensitivity analyses for advanced LWR/SMRs. We are working on closing this gap.
- An LWR/SMR NuScale model has been developed based on open specifications.
- For that model, we are ready to provide:
 - 7g sensitivity profiles for the TAR assessment, for which more comprehensive conclusions may be extracted.
 - 252g sensitivity profiles for Uncertainty Quantification analyses.
- Uncertainty propagation results prove that LWR/SMRs nuclear data-related are still to be improved.
- As future work, this study can be extended, if relevant, with sensitivities for:
 - Safety-related reactivity coefficients.
 - Power distribution.
 - Reaction rates.
 - Control rod worth.
 - Boron concentration.

This work is part of the SANDA project (Supplying Accurate Nuclear Data for energy and non-energy Applications) that has received funding from the European Union's H2020/Euratom under grant agreement No. 847552.

Universidad Politécnica de Madrid E.T.S de Ingenieros Industriales

Thank you! Questions?

A. Jiménez-Carrascosa, L. Durán-Vinuesa, O. Cabellos, N. García-Herranz

Department of Energy Engineering Universidad Politécnica de Madrid (UPM), Spain

Meeting of the OECD/NEA WPEC-SG46 15 March 2022