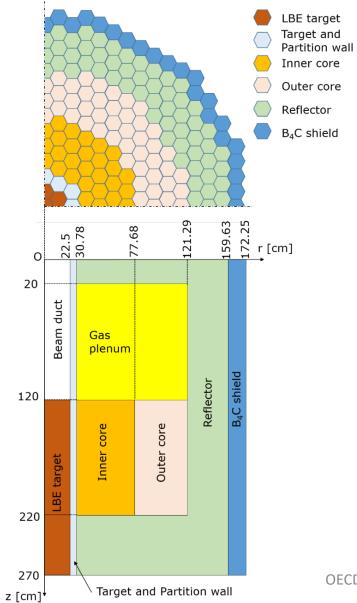

Proposal of Target Accuracy for ADS Neutronics Design

<u>Takanori SUGAWARA</u>, Masahiro FUKUSHIMA and Kenji NISHIHARA Japan Atomic Energy Agency

Background



- JAEA has investigated partitioning and transmutation (P&T) technology to transmute minor actinide (MA) by double-strata strategy
- In this strategy, the dedicated MA transmutation cycle using accelerator-driven system (ADS) is introduced

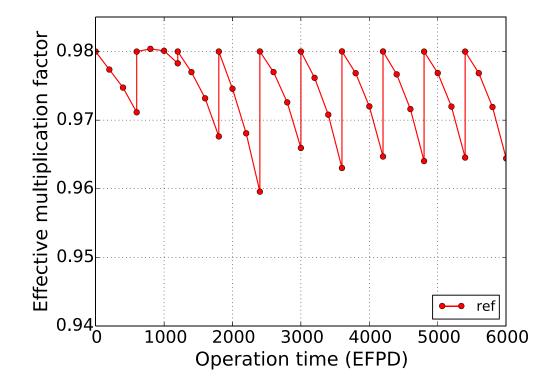
Configuration

800 MWt
LBE
300°C
2.0 m/sec
0.98
600 EFPDs
276
134.5 mm
133.5 mm
121
(MA+Pu)N+ZrN
7.65 mm
0.5 mm
11.48 mm
1000 mm

T. Sugawara, et al., ANE 111, 449-459 (2018)

OECD/NEA WPEC/SG46 meeting, 14th Apr. 2021.

Proposal of TA for ADS


	-	
	Proposal	
	for ADS	
		From the viewpoint of core configuration.
Multiplication factor (BOL)	450pcm	±3 FA (fuel assemblies) can be permitted
		(One FA has about 150 pcm).
		If k-eff=0.98 at BOL. This value is used
Power peak (BOL)	5%	for the estimation of cladding tube
	1	temperature for SFR.
Burnup reactivity swing	200 pcm	If k-eff changes from 0.98 (BOL) to 0.96
		(EOL). The value is 5% of the
		subcriticality at EOL.
	300 pcm	It should be set as pcm to consider
Coolant void reactivity		positive/negative effects. The definition
Coolant void reactivity		of coolant void (in core or whole region)
		should be explained.
Doppler reactivity	10%	The doppler reactivity is not so important
		in ADS design because the value is very
		small.
Major nuclide density at end of irradiation cycle	2%	Same as NEA WPEC/SG26 report
Other nuclide density at end of irradiation cycle	10%	Same as NEA WPEC/SG26 report

k-eff and burnup swing

	Dr. Salvatores*	Proposal
Multiplication factor (BOL)	200 pcm	450 pcm
Burnup reactivity swing	200 pcm	200 pcm

- From the viewpoint of core buildup, ±3 fuel assemblies can be permitted.
 - The measurement of the subcriticality is possible at BOL, only.
 - One fuel assembly has about 150 pcm, so 450 pcm can be acceptable.
- The target accuracy of burnup swing is 5% of the subcriticality at EOL.
 - JAEA-ADS has no control rods.
 - 4000 pcm (k_{eff} =0.96) * 5% = 200 pcm

*: M.Salvatores, Nuclear data target accuracies: an expanded assessment, based on new covariance data and generalized methods (March, 2019)

Void and Doppler reactivities

	Dr. Salvatores	Proposal
Coolant void reactivity	5%	300 pcm
Doppler reactivity	5%	10%

- Coolant void reactivity: it should be set as pcm to consider positive/negative effects.
- The definition of coolant void reactivity is important (whole/core region?)
- Doppler reactivity: it is not so important in the ADS design because the value is very small.

Reactivities for JALA-A	1 st BOC	10 th BOC
Coolant void reactivity (whole region)	-7652	-9762
Coolant void reactivity (core region)	7405	6131
Doppler reactivity (+500 C)	-10	-11

Reactivities for JAEA-ADS [pcm]

Additional parameters to be considered for ADS

	Proposal for ADS	
β _{eff} (BOL/EOL)	3%	The subcriticality will be measured in unit of \$ by PNS method in ADS. Then, the subcriticality will be converted by β_{eff} to the absolute value. This uncertainty affects directly to the proton beam current.
Product of Number of spallation neutron (N_p) and Spallation source efficiency (ϕ^*)	3%	$N_p \phi^*$ is the parameter related to the thermal power of ADS.
Heat generation by spallation reaction	5%	This value is important for the design of beam window

	_	
	Proposal	
	for ADS	
		From the viewpoint of core configuration.
Multiplication factor (BOL)	450pcm	±3 FA (fuel assemblies) can be permitted
		(One FA has about 150 pcm).
		If k-eff=0.98 at BOL. This value is used
Power peak (BOL)	5%	for the estimation of cladding tube
	t	temperature for SFR.
Burnup reactivity swing	200 pcm	If k-eff changes from 0.98 (BOL) to 0.96
		(EOL). The value is 5% of the
		subcriticality at EOL.
	300 pcm	It should be set as pcm to consider
Coolant void reactivity		positive/negative effects. The definition
		of coolant void (in core or whole region)
		should be explained.
		The doppler reactivity is not so important
Doppler reactivity	10%	in ADS design because the value is very
		small.
Major nuclide density at end of irradiation cycle	2%	Same as NEA WPEC/SG26 report
Other nuclide density at end of irradiation cycle	10%	Same as NEA WPEC/SG26 report

	NEA/WPEC -26 report (2008)	Proposal by Dr. Salvatores	Proposal for ADS by JAEA
Multiplication factor (BOL)	300 pcm	200 pcm	450pcm
Power peak (BOL)	2%	1%	5%
Burnup reactivity swing	300 pcm	200 pcm	200 pcm
Reactivity coefficients (Coolant void and Doppler – BOL/EOL)	7%	5%	300pcm (void) 10% (Doppler)
Control rod bank	-	3%	-
Single control rod	-	2%	-
Major nuclide density at end of irradiation cycle	2%	1%	2%
Other nuclide density at end of irradiation cycle	10%	10%	10%