

Universidad Politécnica de Madrid E.T.S de Ingenieros Industriales

Joint UPM and CIEMAT contribution: Progress on European Sodium Fast Reactor (ESFR)

A. Jiménez-Carrascosa¹, N. García-Herranz¹, O. Cabellos¹, F. Alvarez-Velarde², P. Romojaro²

¹Universidad Politécnica de Madrid (UPM), Spain ²Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain

> Meeting of the OECD/NEA WPEC-SG46 11 November 2020

Outline

- 1. Introduction
- 2. Computational tools
- 3. Models
- 4. S/U analyses
- 5. Data assimilation
- 6. Outlook

1. Introduction

WP1.2: Normal operation of the ESFR-SMART

 T1.2.2: Uncertainties in the mapping of Doppler and void reactivity for the EoC ESFR core

S/U and data assimilation for the co-development of nuclear data and ESFR

- S/U for main integral parameters
- Selection of useful integral experiments
- Data assimilation (ongoing)

Joint UPM and CIEMAT contribution: Progress on ESFR - WPEC SG46 meeting, 11 November 2020

2. Computational tools

- SCALE 6.2.3
 - TSUNAMI-3D continuous energy (CE) as reference module
 - Linear perturbation theory
 - Transport solver KENO-VI
 - Eigenvalue sensitivities: CLUTCH
 - CE JEFF-3.1 XS data (AMPX-processed at UPM)
 - Covariance data: SCALE6.2-56g (ENDF/B-VII.1 based), JEFF-3.3 and ENDF/B-VIII.0
 - TSAR module
 - Reactivity response sensitivity: eigenvalue-difference response + 1st order perturbation theory
- Data assimilation with SUMMON (DAWN)
 - Based on Bayesian inference and GLS technique

3. Models: actual ESFR core

Heterogeneous 3D ESFR core

- 3600 MWth sodium cooled fast reactor
- MOX-fueled inner core (216 hex. assemblies) and outer core (288 hex. assemblies)
- Multibatch core model containing 84 burnable regions
- EoC conditions (M. Margulis et al., ESFR-SMART deliverable D1.2.2)

3. Models: simplified ESFR core

Homogeneous R-Z ESFR model

- R-Z model for systematic S/U analyses
- Volumes of zones adjusted to maintain masses
- Dimensions and materials collected in an Excel spreadsheet and sent to WPEC/SG46 (July 2020 after approval of the ESFR-SMART Governing Board)

3. Models: impact of R-Z approximation

k_{eff} integrated sensitivity coefficients $\left(\frac{\Delta k_k}{\Delta \Sigma_{\Sigma}}\right)$ with TSUNAMI-3D CE and JEFF-3.1

Quantity	Heterogeneous 3D (%/%)	R-Z (%/%)	Relative deviation (%)
Pu-239 nubar	$6.3496 \cdot 10^{-1} \pm 9.6 \cdot 10^{-5}$	$6.3444 \cdot 10^{-1} \pm 7.9 \cdot 10^{-5}$	0.08
Pu-239 fission	$4.7317 \cdot 10^{-1} \pm 9.8 \cdot 10^{-5}$	$4.7407\cdot 10^{-1}\pm 8.0\cdot 10^{-5}$	-0.19
U-238 (<i>n</i> ,γ)	$-1.9655 \cdot 10^{-1} \pm 4.7 \cdot 10^{-5}$	$-1.9723\cdot10^{-1}\pm3.7\cdot10^{-5}$	-0.45
U-238 nubar	$1.2774 \cdot 10^{-1} \pm 7.0 \cdot 10^{-5}$	$1.2643 \cdot 10^{-1} \pm 5.5 \cdot 10^{-5}$	1.04
Pu-241 nubar	$1.0068 \cdot 10^{-1} \pm 5.6 \cdot 10^{-5}$	$1.0190 \cdot 10^{-1} \pm 5.2 \cdot 10^{-5}$	-1.20
Pu-240 nubar	$8.1273 \cdot 10^{-2} \pm 5.4 \cdot 10^{-5}$	$8.1419 \cdot 10^{-2} \pm 4.4 \cdot 10^{-5}$	-0.18
U-238 fission	$7.6853 \cdot 10^{-2} \pm 7.1 \cdot 10^{-5}$	$7.6306 \cdot 10^{-2} \pm 5.6 \cdot 10^{-5}$	-0.64
Pu-241 fission	$7.6214 \cdot 10^{-2} \pm 5.7 \cdot 10^{-5}$	$7.7346 \cdot 10^{-2} \pm 5.2 \cdot 10^{-5}$	-0.12
U-238 (n, n')	$-7.5041\cdot10^{-2}\pm1.8\cdot10^{-4}$	$-7.3781\cdot10^{-2}\pm1.6\cdot10^{-4}$	1.71
O-16 elastic	$-6.1044 \cdot 10^{-2} \pm 1.1 \cdot 10^{-3}$	$-6.1258\cdot 10^{-2}\pm 8.8\cdot 10^{-4}$	-0.35
Pu-239 (<i>n</i> ,γ)	$-4.1989\cdot10^{-2}\pm1.5\cdot10^{-5}$	$-4.1352\cdot 10^{-2}\pm 1.2\cdot 10^{-5}$	1.54
Fe-56 (<i>n, n</i> ′)	$-2.0437\cdot 10^{-2}\pm 6.9\cdot 10^{-5}$	$-2.2033\cdot10^{-2}\pm6.1\cdot10^{-5}$	-7.24
Fe-56 (<i>n</i> , γ)	$-1.0036 \cdot 10^{-2} \pm 7.3 \cdot 10^{-6}$	$-1.0255\cdot10^{-2}\pm6.0\cdot10^{-6}$	-2.14
Na-23 (n, n')	$-7.2866 \cdot 10^{-3} \pm 4.9 \cdot 10^{-5}$	$-7.8\overline{449\cdot10^{-3}\pm4.2\cdot10^{-5}}$	-7.12

3. Models: impact of R-Z approximation

4. S/U analyses

S/U analyses for R-Z model with TSUNAMI-3D CE for the following integral parameters:

• k_{eff}

- Sodium void scenarios (see figure below)
- Doppler coefficient
- Control rod worth

	Void 1			Void 2		Void 3		Void 4			Void 5			
	Void IF			Void OF		Void above IF			 Void above OF			Void all		
OF Fissile	IF Fissile	OF Fissile	OF Fissile	IF Fissile	OF Fissile	OF Fissile	IF Fissile	OF Fissile	OF Fissile	IF Fissile	OF Fissile	OF Fissile	IF Fissile	OF Fissile
	IF			IF			IF			IF			IF	
OF	Fertile	OF	OF	Fertile	OF	OF	Fertile	OF	OF	Fertile	OF	OF	Fertile	OF
Fertile		Fertile	Fertile		Fertile	Fertile		Fertile	Fertile		Fertile	Fertile		Fertile

Parameter	TA (%)	Unc. (%) SCALE-6.2	Unc. (%) JEFF-3.3	Unc. (%) ENDF/B-VIII.0
<i>k</i> _{eff}	0.3	1.35	1.05	0.80
Sodium void worth	7	11.5	8.5	11.2
Doppler effect(+300 K)	7	6.3	4.0	3.5
Control rod worth	7	2.4	1.9	1.3

Target accuracies exceeded for k_{eff} and for SVR

4. S/U analyses: k_{eff}

Quantity		$\Delta k_{eff}/k_{eff}$ (%)	
Quantity	SCALE6.2-56g	JEFF-3.3	ENDF/B-VIII.0
U-238 inelastic	1.1740	0.4796	0.2394
U-238 capture	0.2550	0.3026	0.2534
Pu-239 capture	0.2179	0.1193	0.2026
Pu-239 χ	0.2004	0.4526	0.2207
U-238 inelastic-elastic	0.1958	0.0927	0.0728
Pu-239 fission	0.1948	0.3070	0.5541
U-238 χ	0.1689	0.1059	0.0734
Pu-241 χ	0.1681	0.1853	-
U-238 nubar	0.1494	0.1218	0.1540
Fe-56 inelastic	0.1387	0.0608	0.0915
O-16 elastic	0.1219	0.1219	0.0198
Na-23 inelastic	0.0928	0.0198	0.0918
Pu-240 capture	0.0809	0.1794	0.0836
Pu-240 fission	0.0659	0.5940	0.0643
Pu-239 nubar	0.0555	0.2935	0.1730
Pu-241 fission	0.0519	0.0954	0.0538
U-238 fission	0.0399	0.2003	0.0933
Total uncertainty	1.3457	1.0453	0.8027

4. S/U analyses: k_{eff}

Incident neutron data / / Pu240 / MT=18 : (z,fission) /

– ENDF/B-VII.1 – JEFF-3.3

SCALE6.2-58g_ENDF/B-VII.1

Uncertainties reported in different covariance evaluations:

- U-238 (*n*, *n*′)
- Pu-240 fission
- Pu-239 ν

60

50

40

30

standard deviation (%)

Relative s

Joint UPM and CIEMAT contribution: Progress on ESFR – WPEC SG46 meeting, 11 November 2020

			CE TSUNAMI-3D						
Scenario	Het. 3D Vold	RZ void worth	Ν	luclear data uncertainty ((pcm)				
	worth (peni)	(pcm)	SCALE6.2-56g	JEFF-3.3	ENDF/B-VIII.0				
1	954	1116 <u>+</u> 12	57.7 ± 0.6 (5.2%)	43.7 (3.9%)	59.9 (5.4%)				
2	755	1013 <u>+</u> 12	69.1 ± 0.7 (6.8%)	50.7 (5.0%)	70.5 (7.0%)				
3	-610	-445 ± 13	18.8 ± 1.0 (4.2%)	14.7 (3.3%)	11.5 (2.6%)				
4	-466	-427 ± 12	17.4 ± 1.0 (4.1%)	14.5 (3.4%)	11.1 (2.6%)				
5	269	989 <u>+</u> 12	114 ± 0.6 (11.5%)	84.1 (8.5%)	110.5 (11.2%)				

	Void 1			Void 2			Void 3			Void 4			Void 5		
	Void IF			Void OF		Void above IF		Void above OF			F	Void all			
OF Fissile	IF Fissile	OF Fissile	OF Fissile	IF Fissile	OF Fissile	OF Fissile	IF Fissile	OF Fissile		OF Fissile	IF Fissile	OF Fissile	OF Fissile	IF Fissile	OF Fissile
	IF			IF			IF				IF			IF	
OF	Fertile	OF	OF	Fertile	OF	OF	Fertile	OF		OF	Fertile	OF	OF	Fertile	OF
Fertile		Fertile	Fertile		Fertile	Fertile		Fertile		Fertile		Fertile	Fertile		Fertile

Joint UPM and CIEMAT contribution: Progress on ESFR – WPEC SG46 meeting, 11 November 2020

Quantity	Δρ ISC (%/%)
Pu-239 nubar	$-1.26 \cdot 10^{0} \pm 1 \cdot 10^{-2}$
U-238 (<i>n</i> , γ)	$9.94 \cdot 10^{-1} \pm 5 \cdot 10^{-3}$
Na-23 elastic	$7.64 \cdot 10^{-1} \pm 8 \cdot 10^{-2}$
Na-23 (<i>n, n</i> ′)	$6.04 \cdot 10^{-1} \pm 5 \cdot 10^{-3}$

SCALE6.2		JEFI	-3.3	ENDF/B-VIII.0		
Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)	
Na-23 inelastic	$\boldsymbol{6.96\pm0.01}$	Pu-239 fission	6.26	Na-23 inelastic	6.89	
U-238 inelastic	5.34 ± 0.03	Pu-239 capture	2.77	Pu-239 fission	6.35	
Na-23 elastic	$\textbf{4.87} \pm \textbf{0.04}$	U-238 inelastic	2.52	Na-23 elastic	4.86	
U-238 capture	2.59 <u>+</u> 0.00	U-238 capture	2.33	Pu-239 capture	2.65	
U-238 inel-elastic	2.58 ± 0.03	Na-23 elastic	2.28	U-238 capture	1.85	
Fe-56 elastic	2.57 ± 0.02	Na-23 capture	1.69	U-238 inelastic	1.45	

4. S/U analyses: Doppler coefficient

Inner core fissile fuel +300K

	N	Nuclear data uncertainty (pcm)						
RZ temperature. reactivity (pcm)	SCALE6.2	JEFF-3.3	ENDF/B-VIII.0					
-148 ± 13	9.32 ± 1.1 (6.3%)	5.9 (4.0%)	5.1 (3.5%)					

Quantity	R-Z - Δho_{fuel} ISC (%/%)
Pu-239 fission	$6.91 \cdot 10^{-1} \pm 8 \cdot 10^{-2}$
U-238 nubar	$3.11 \cdot 10^{-1} \pm 5 \cdot 10^{-2}$
Pu-239 (<i>n</i> , γ)	$2.10 \cdot 10^{-1} \pm 1 \cdot 10^{-2}$
Pu-240 nubar	$1.94 \cdot 10^{-1} \pm 4 \cdot 10^{-2}$

SCALE6.2		JEFI	-3.3	ENDF/B-VIII.0		
Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)	
Nd-150 elastic	3.06 ± 0.13	Fe-56 elastic	1.99	Fe-56 elastic	1.36	
Fe-56 elastic	2.65 ± 0.47	Pu-240 fission	1.83	Cr-52 elastic	1.29	
Nd-144 elastic	2.34 <u>+</u> 0.27	Pu-239 <i>χ</i>	1.29	Pu-239 fission	1.23	
U-238 elastic	2.25 <u>+</u> 0.22	Nd-150 elastic	1.20	U-238 elastic	1.17	
Cr-52 elastic	1.33 ± 0.06	Pu-239 capture	0.88	Pu-239 inelastic	1.16	
Pu-239 inelastic	1.15 <u>+</u> 0.04	Fe-54 elastic	0.79	Pu-239 capture	0.97	

Joint UPM and CIEMAT contribution: Progress on ESFR – WPEC SG46 meeting, 11 November 2020

4. S/U analyses: Control rod worth

Het. 3D CR	CE TSUNAMI-3D							
	RZ CR worth	Nuclear data uncertainty (pcm)						
norm (poin)	(pcm)	SCALE6.2 JEFF-3.3		ENDF/B-VIII.0				
-4988	-5418.5 ± 13	127.8 ± 1.0	101.3	71.6				

Quantity	R-Z - Δρ _{CR} ISC (%/%)
Pu-239 fission	$4.38 \cdot 10^{-1} \pm 2 \cdot 10^{-3}$
O-16 elastic	$2.56 \cdot 10^{-1} \pm 2 \cdot 10^{-2}$
U-238 nubar	$2.48 \cdot 10^{-1} \pm 2 \cdot 10^{-3}$
B-10 (<i>n</i> , γ)	$-2.40 \cdot 10^{-1} \pm 3 \cdot 10^{-4}$

SCALE6.2		JEFF-3.3		ENDF/B-VIII.0	
Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)
U-238 inelastic	1.46 ± 0.01	Pu-240 fission	1.16	Pu-239 fission	0.73
Fe-56 elastic	1.04 ± 0.01	Pu-239 <i>χ</i>	0.71	Na-23 elastic	0.69
Na-23 elastic	0.67 ± 0.00	Fe-56 elastic	0.56	Pu-239 <i>χ</i>	0.35
U-238 inel-elastic	0.64 ± 0.01	U-238 fission	0.53	Pu-240 <i>χ</i>	0.33
U-238 <i>χ</i>	0.50 ± 0.00	O-16 elastic	0.50	U-238 nubar	0.30
O-16 elastic	0.50 ± 0.00	Pu-239 fission	0.41	U-238 inel-elastic	0.27

Joint UPM and CIEMAT contribution: Progress on ESFR – WPEC SG46 meeting, 11 November 2020

4. S/U analyses: conclusions

- Nuclear data needs for ESFR in JEFF-3.3:
 - Reduction of uncertainty ²³⁸U (n, n'), (n, γ)
 - Reduction of uncertainty ²⁴⁰Pu (n, f)
 - Reduction of uncertainty ²³⁹Pu ν , χ , (n, f), (n, γ)
 - Reduction of uncertainty ²³Na (n, n)
 - Reduction of uncertainty ⁵⁶Fe (n, n)

5. Data assimilation

- Revision of experiments from:
 - Critical experiments from ICSBEP (DICE)
 - Reactor experiments from IRPhE
- For the following integral parameters:
 - k-eff
 - Sodium void worth

• Useful experiments for k-eff:

Source	Experiment	DICE or IDAT (Sensitivity ranking)	c _k	E	Experimental value
	MIX-COMP-FAST-006-001	0,967	0,91	0,97	0,9889 ± 0,0021
DICE	MIX-COMP-FAST-005-001	0,964	0,96	0,97	0,9913 ± 0,0023
DIGE	MIX-COMP-FAST-001-001	0,970	0,93	0,97	0,9866 ± 0,0023
	MIX-MISC-FAST-002-001	0,942	0,94	0,95	$1,0005 \pm 0,0021$
	ZPR-FUND-EXP-014-001	0,962	0,96	0,97	0,9913 ± 0,0023
	BFS1-FUND-EXP-004-001	0,942	0,94	0,95	$1,0005 \pm 0,0021$
IDAI	FFTF-LMFR-RESR-001-001	0,933	0,73	0,95	0,9993 ± 0,0021
	SNEAK-LMFR-EXP-001-001	0,929	0,87	0,95	$1,001 \pm 0,0035$
WPEC-SG33 (ANL)	ZPPR9_Keff_Sens_Coef.ANL	-	0,96	0,79	1,0008 ± 0,00154
	ZPR6-7_Keff_Sens_Coef.ANL	-	0,92	0,78	0,9866 ± 0,0023
	ZPR6-7_PU240_Keff_Sens_Coef.ANL	-	0,92	0,79	0,9874 ± 0,0022

• Useful experiments for sodium void worth:

Source	Experiment	c _k	E	Experimental value (pcm)
WPEC-SG33 (ANL)	ZPPR9_VOID_Step3	0,855	0,939	29,18 ± 1,7 %
	ZPPR9_VOID_Step5	0,840	0,944	31,3 ± 1,7 %
IRPhE (UPM - CIEMAT)	ZPPR-LMFR-EXP-011-VOID_case09	0,584	0,918	195,42 ± 5,1 %

6. Outlook

- ESFR R-Z model has been developed
- S/U for ESFR using TSUNAMI-3D CE approach for main integral parameters (comparison of methodologies ongoing in the EU SANDA project)
- Uncertainty quantification with different covariance evaluations
- Identification of nuclear data needs in JEFF-3.3 via major contributors to the uncertainty
- Revision of experiments useful for DA in k_{eff} and sodium void worth from different sources
- Data assimilation for ESFR currently ongoing

Universidad Politécnica de Madrid E.T.S de Ingenieros Industriales

Thank you for your attention!

Backup slides

Joint UPM and CIEMAT contribution: Progress on ESFR – WPEC SG46 meeting, 11 November 2020

SLIDE 23

Quantity	R-Ζ - Δρ ISC (%/%)
Pu-239 nubar	$-7.59 \cdot 10^{-1} \pm 1 \cdot 10^{-2}$
Na-23 elastic	$5.23 \cdot 10^{-1} \pm 8 \cdot 10^{-2}$
U-238 (<i>n</i> , γ)	$4.04 \cdot 10^{-1} \pm 5 \cdot 10^{-3}$
Na-23 inelastic	$2.76 \cdot 10^{-1} \pm 5 \cdot 10^{-3}$

SCALE6.2		JEFF	-3.3	ENDF/B-VIII.0	
Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)
Na-23 inelastic	3.09 ± 0.01	Pu-239 fission	2.63	Na-23 elastic	3.08
Na-23 elastic	3.02 ± 0.05	Na-23 elastic	1.49	Na-23 inelastic	3.06
U-238 inelastic	1.77 ± 0.02	U-238 inelastic	1.18	Pu-239 fission	2.64
U-238 capture	1.05 ± 0.00	Pu-239 capture	1.14	Pu-239 capture	1.12
Pu-239 fission	0.93 ± 0.00	U-238 capture	0.93	U-238 inelastic	0.89
U-238 inel-elastic	0.86 ± 0.02	U-238 capt-inelastic	0.72	U-238 capture	0.76

Quantity	R-Ζ - Δρ ISC (%/%)
Pu-239 nubar	$-1.06 \cdot 10^{0} \pm 1 \cdot 10^{-2}$
U-238 (<i>n</i> , γ)	$6.88 \cdot 10^{-1} \pm 5 \cdot 10^{-3}$
Na-23 elastic	$5.29 \cdot 10^{-1} \pm 9 \cdot 10^{-2}$
Na-23 inelastic	$3.86 \cdot 10^{-1} \pm 5 \cdot 10^{-3}$

SCALE6.2		JEFF-3.3		ENDF/B-VIII.0	
Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)
Na-23 inelastic	4.39 ± 0.01	Pu-239 fission	3.58	Na-23 inelastic	4.34
Na-23 elastic	3.48 ± 0.05	Pu-239 capture	1.53	Pu-239 fission	3.57
U-238 inelastic	2.58 ± 0.03	Na-23 elastic	1.51	Na-23 elastic	3.50
U-238 capture	1.64 ± 0.00	U-238 capture	1.43	Pu-239 capture	1.48
Pu-239 fission	1.29 <u>+</u> 0.00	U-238 inelastic	1.26	U-238 capture	1.15
U-238 inel-elastic	1.06 ± 0.03	Fe-56 elastic	0.98	Pu-239 capt-fission	0.79

Quantity	R-Z - Δρ ISC (%/%)
O-16 elastic	$6.92 \cdot 10^{-1} \pm 3 \cdot 10^{-1}$
Fe-56 elastic	$4.76 \cdot 10^{-1} \pm 3 \cdot 10^{-1}$
Pu-239 nubar	$3.79 \cdot 10^{-1} \pm 3 \cdot 10^{-2}$
U-238 nubar	$2.86 \cdot 10^{-1} \pm 2 \cdot 10^{-2}$

SCALE6.2 JEFF-3.3		-3.3	ENDF/	B-VIII.0	
Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)
Fe-56 elastic	3.15 <u>+</u> 0.20	Fe-56 elastic	1.53	Cr-52 elastic	1.14
O-16 elastic	1.35 ± 0.02	Pu-240 fission	1.36	Na-23 elastic	1.01
Cr-52 elastic	1.11 ± 0.02	O-16 elastic	1.34	Fe-56 elastic	0.93
Na-23 elastic	1.01 ± 0.04	Fe-54 elastic	0.86	Pu-239 fission	0.86
U-238 elastic	0.81 ± 0.03	Fe-57 elastic	0.75	U-238 elastic	0.86
Fe-57 elastic	0.66 ± 0.01	Na-23 elastic	0.60	U-238 inelastic	0.72

Void 4

Quantity	R-Z - Δρ ISC (%/%)
O-16 elastic	$6.34 \cdot 10^{-1} \pm 3 \cdot 10^{-1}$
Pu-239 fission	$5.97 \cdot 10^{-1} \pm 3 \cdot 10^{-2}$
Fe-56 elastic	$5.05 \cdot 10^{-1} \pm 3 \cdot 10^{-1}$
U-238 elastic	$4.14 \cdot 10^{-1} \pm 3 \cdot 10^{-2}$

SCALE6.2		JEFF-3.3		ENDF/B-VIII.0	
Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)	Reaction	Δρ/ρ (%)
Fe-56 elastic	3.04 <u>+</u> 0.21	Fe-56 elastic	1.45	Na-23 elastic	1.54
Na-23 elastic	1.46 ± 0.07	Pu-240 fission	1.27	Pu-239 fission	1.10
O-16 elastic	1.25 ± 0.03	O-16 elastic	1.25	U-238 elastic	0.83
U-238 elastic	0.74 ± 0.04	Pu-239 χ	0.98	Fe-56 elastic	0.76
Cr-52 elastic	0.59 ± 0.01	U-238 elastic	0.92	Cr-52 elastic	0.62
Nd-144 elastic	0.57 ± 0.04	Na-23 elastic	0.75	Pu-239 χ	0.58