Treating inconsistent data in integral adjustment using Marginal Likelihood Optimization.

Henrik Sjöstrand1,a, Georg Schnabela, Daniel Siefmanb Dimitri Rochmanc

aUppsala University, Sweden
bÉcole polytechnique fédérale de Lausanne (EPFL), Switzerland
cPaul Scherrer Institute (PSI), Switzerland
1henrik.sjostrand@physics.uu.se
Inconsistent data

IEU-Met-Fast and HEU-Met-Fast\(^1\)
1000 TENDL2014 files

\(^1\)Curtesy of Steven Van Der Marck
Inconsistent data - causes

• Model defects
 – e.g., ND uncertainties or correlation not taking into account (lack of nuisance parameters).
 – models inability to reproduce the true ND.
• Unaccounted experimental uncertainties or correlations.
• Underestimated statistical uncertainties.
• Isotopes not taken into account.

\[
\sigma_{B,J}^2 = \sigma_{rep}^2 + \sigma_{stat}^2 + \sigma_{defects}^2 + \sigma_{other}^2 + \sum_{\text{overall } p \text{ where } p \neq J} \sigma_{ND,p}^2
\]
Previous attempts to address inconsistent integral experiments

Adjustment Margin (AM)

$$\frac{\Delta C}{C} + \frac{\Delta E}{E} - \left| \frac{C - E}{E} \right| = AM < 0$$

$\Delta \chi^2$ filtering

$$\chi^2 = (E - C(\sigma))^T (M_C + M_E)^{-1} (E - C(\sigma))$$

Includes correlations

$$\chi^2 - \chi^2_{\neq i} = \Delta \chi^2 > Th$$

$$Th = 1.2 \text{ (Scale)}$$

Credit to Daniel Siefman
Possible issues

AM

1) does not take into account correlations.

2) is binary.

Δχ² filtering

1) is binary.

2) The choice of 1.2 is rather arbitrary? It should depend on the number of experiments. (Can be resolved)
Before and after calibration

IEU-Met-Fast and HEU-Met-Fast

1000 TENDL2014 files

AM would not reject any of the experiments.
Treating inconsistent data using Marginal Likelihood Optimization (MLO)

$L = f$ (Extra uncertainty)

R033 – G. Schnabel, Interfacing TALYS with A Bayesian Treatment of Inconsistent Data and Model Defects, ND2019
MLO for integral data and BMC

- We add an extra uncertainty to each experiment.

\[
\sigma_{B,J}^2 = \sigma_{rep}^2 + \sigma_{stat}^2 + \sigma_{defects}^2 + \sigma_{other}^2 + \sum_{\text{overall p where } p \neq J} \sigma_{ND,p}^2
\]

\[
\sigma_{B,l,J}^2 = \sigma_{rep}^2 + \sigma_{stat}^2 + \sigma_{extra,l}^2
\]

- \(\sigma_{\text{extra}}\) found by maximizing \(L\):

\[
L = \frac{1}{\sqrt{2\pi n \left| \text{cov}_{\text{rep,stat,extra}} \right|}} \sum_i e^{-\frac{\chi_i}{2}}
\]

\(n = \text{number of experiments}\)

1 Here MC and integral information. Compare with
1G. Schnabel, Fitting and analysis technique for inconsistent data, MC2017
Adding a prior

\[\text{prior}(\sigma_{\text{extra}}) = e^{-\beta \sigma_{\text{extra}}^2} \quad \text{or,} \]

\[\text{prior}(\sigma_{\text{extra}}) = e^{-\beta \sigma_{\text{extra}}} \]

\[L = \frac{1}{\sqrt{2\pi n} |\text{cov}_{\text{rep,stat,extra}}|} \sum_i e^{-\beta \sum_{\text{extra}}^2} \frac{-\chi_i}{2} \]

To favor small extra uncertainties. Includes more of expert judgement.

\[\beta \text{is chosen by expert judgement} \quad \text{or in a data-driven approach}^{1}. \]

\(^1\)G. Schnabel, *Fitting and analysis technique for inconsistent data*, MC2017
MLO for BMC / GLS

\[L_{\text{BMC}} = \frac{1}{\sqrt{2\pi n} \left| \text{cov}_{\text{rep}} + \text{cov}_{\text{extra}} \right|} e^{-\beta \sum \sigma^2_{\text{extra}}} \sum e^{\frac{\chi_i}{2}} \]

\[L_{\text{GLS}} = \frac{1}{\sqrt{2\pi n} \left| S A_0 S^T + \text{cov}_{\text{rep}} + \text{cov}_{\text{extra}} \right|} e^{-\beta \sum \sigma^2_{\text{extra}}} e^{\frac{\chi^2}{2}} \]

\(A_0 = \text{prior covariance} \)

\(n = \text{number of experiments} \)
Synthetic data study MLO - GLS

- Characterize MLO’s performance,
 - GLS
 - No prior on the extra uncertainty
- Take hypothetical integral parameters (IPs)
- Have calculated values (C) and experimental (E), which have covariance matrices M_E and M_C
- Manipulate the reported uncertainty in M_E to see if MLO can account for it
 - Under-reported: $M_{E}^{\text{fake}} = M_{E} * 0.1$
 - Give M_{E}^{fake} to MLO, and see if it reproduces M_{E}
Under-estimated E Uncertainty

- Chi2 plotted with sample mean, std from chi2 distribution

\[(C - E)^T (M_E^{fake} + M_C) \chi^2 \text{ per DOF with MLO}

\[(C - E)^T (M_E^{fake} + M_C)^{-1} (C - E) \chi^2 \text{ per DOF no MLO}
Under-estimated E Uncertainty

- Averaged across all IPs

\[
\sqrt{\delta_{Efake}^2 + \delta_C^2 + \delta_{MLO}^2} \div \sqrt{\delta_E^2 + \delta_C^2}
\]
MLO Applied to SG33 Benchmark

- Apply MLO to controlled set of benchmarks using GLS version of the formula
 - No prior on extra uncertainty and no experimental correlations between the IP.
- Conceptually easy case: one inconsistent IP
- Perhaps not ideal case:
 - Prior chi2 is already too small, likely overconsistent, (data already tuned to these experiments?)
- Using MLO here to only identify inconsistent IP
- 33 group ENDF/B-VII.0 and COMMARA- 2.0.
- B-10, O-16, Na-23, Fe-56, Cr-52, Ni-58, U-235/238, Pu-239/240/241
MLO Effects on SG33 Benchmark

Without MLO

With MLO

- JEZEBEL Pu-239 k_{eff}
- JEZEBEL Pu-239 F28/F25
- JEZEBEL Pu-239 F49/F25
- JEZEBEL Pu-239 F37/F25
- JEZEBEL Pu-240 k_{eff}
- FLATTOP k_{eff}
- FLATTOP F28/F25
- FLATTOP F37/F25
- ZPR6-7 k_{eff}
- ZPR6-7 F28/F25
- ZPR6-7 F49/F25
- ZPR6-7 C28/F25
- ZPR6-7 Pu-240 k_{eff}
- ZPPR-9 k_{eff}
- ZPPR-9 F28/F25
- ZPPR-9 F49/F25
- ZPPR-9 C28/F25
- ZPPR-9 Step 3
- JOYO k_{eff}

- C
- E std
- ND std

- E+MLO std
- C std

C/E - 1 (%)
Posterior Nuclear Data Adjustments

Pu-239 (n, inelastic)

Rel. Adj. (%) vs. Energy (MeV)

Rel. Std. (%) vs. Energy (MeV)

with MLO
without MLO
Prior
Posterior Nuclear Data Adjustments

Pu-239 (n, capture)

- Relative Adjustment (%)

- Energy (MeV)

- Lines:
 - Blue: with MLO
 - Orange Dash: without MLO
 - Black Dash: Prior

- Y-axis:
 - Values range from 0 to 4.5

- X-axis:
 - Energy range from 10^{-4} to 10^1 MeV
Posterior Nuclear Data Adjustments

Correlations were also changed.
BMC case

IEU-Met-Fast and HEU-Met-Fast\(^1\)
1000 TENDL2014 files

- Red dots: Before calibration + U5U8 unc.
- Blue dots: After calibration + U5U8 unc.
- Orange line: Benchmark uncertainty
Benchmark errors are correlated: Adding a correlation term

- Correlations: σ_E, σ_{defect}, $\sigma_{\text{other isotopes}}$
- A fully correlated uncertainty is added to all experiments.

$$\sigma_{B,l}^2 = \sigma_{E,l}^2 + \sigma_{\text{stat},l}^2 + \sigma_{\text{extra},l}^2 + \sigma_{\text{extra all}}^2$$

$$\max(L) \rightarrow \sigma_{\text{extra},l}^2 + \sigma_{\text{extra all}}^2$$
Results – with correlation

<table>
<thead>
<tr>
<th>Benchmark uncertainties [PCM]</th>
<th>HMF1_1</th>
<th>HMF8</th>
<th>IMF2</th>
<th>IMF3_2</th>
<th>IMF7_4</th>
<th>Fully correlated</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ML: Reported uncertainties</td>
<td>100</td>
<td>160</td>
<td>300</td>
<td>170</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Uptated uncertainties</td>
<td>153</td>
<td>204</td>
<td>300</td>
<td>580</td>
<td>390</td>
<td>0</td>
</tr>
<tr>
<td>With correlation</td>
<td>267</td>
<td>329</td>
<td>333</td>
<td>591</td>
<td>409</td>
<td>257</td>
</tr>
</tbody>
</table>
Results with an added prior

Benchmark uncertainties [PCM]

<table>
<thead>
<tr>
<th></th>
<th>HMF1_1</th>
<th>HMF8</th>
<th>IMF2</th>
<th>IMF3_2</th>
<th>IMF7_4</th>
<th>Fully correlated</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ML: Reported uncertainties</td>
<td>100</td>
<td>160</td>
<td>300</td>
<td>170</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Uptated uncertainties</td>
<td>153</td>
<td>204</td>
<td>300</td>
<td>580</td>
<td>390</td>
<td>0</td>
</tr>
<tr>
<td>With correlation</td>
<td>267</td>
<td>329</td>
<td>333</td>
<td>591</td>
<td>409</td>
<td>257</td>
</tr>
<tr>
<td>With prior</td>
<td>232</td>
<td>263</td>
<td>366</td>
<td>468</td>
<td>228</td>
<td>209</td>
</tr>
</tbody>
</table>

Posterior

<table>
<thead>
<tr>
<th></th>
<th>HMF1_1</th>
<th>HMF8</th>
<th>IMF2</th>
<th>IMF3_2</th>
<th>IMF7_4</th>
<th>Chi2</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ML</td>
<td>69</td>
<td>28</td>
<td>103</td>
<td>52</td>
<td>34</td>
<td>2,1</td>
<td>6%</td>
</tr>
<tr>
<td>Uptated uncertainties</td>
<td>139</td>
<td>131</td>
<td>234</td>
<td>183</td>
<td>273</td>
<td>0,38</td>
<td>86%</td>
</tr>
<tr>
<td>With correlation</td>
<td>264</td>
<td>254</td>
<td>313</td>
<td>290</td>
<td>351</td>
<td>0,4</td>
<td>84%</td>
</tr>
<tr>
<td>With Prior</td>
<td>253</td>
<td>214</td>
<td>288</td>
<td>256</td>
<td>265</td>
<td>0,58</td>
<td>72%</td>
</tr>
</tbody>
</table>
A larger data set / BMC – No MLO

8500 TENDL files, MCNP6, PU9, U8 and U5
If allowed, the **MLO reduces the uncertainties** for most of the experiments, indicating that some tuning to these experiments have already been done.
Conclusion

• We need to find and treat unrecognized systematic uncertainties (USU).
• Marginal Likelihood Optimization (MLO) can be an effective tool for this.
• Treating USU reduces the risk of overfitting to the integral data.

• MLO is our preferred method
 ❖ Includes correlations
 ❖ Can introduce correlations
 ❖ Transparent
 ❖ Not binary
 ❖ Statistical well-founded
 ❖ Can be combined with expert judgment.
 ❖ Works with both GLS and BMC adjustment.
Next step: include the full likelihood functions.

- All values of the likelihood functions are possible, hence should be taken into account.
 - affects the best-estimate and normally increase the uncertainty → decrease the adjustment.
- Can be achieved by, e.g., sampling.
- Performed for differential data (reported in SG 44)
THANK YOU FOR YOUR ATTENTION!
References

4. C. De Saint Jean et al., Evaluation of Cross Section Uncertainties Using Physical Constraints: Focus on Integral Experiments, Nuclear Data Sheets, Volume 123, Pages 178-184

5. G. Schnabel, Fitting and analysis technique for inconsistent data, MC2017

6. G. Schnabel, Interfacing TALYS with a Bayesian Treatment of Inconsistent Data and Model Defects, ND2019