

Benchmarking of the latest Neutron and Gamma Transport Cross Sections for Oxygen, Iron and Uranium in clean Benchmarks driven by D-T, ²⁵²Cf and Reactor sources

S.P. Simakov and U. Fischer

in collaboration with Experts from CIELO, JEFF,:

- D. Brown, R. Capote, M. Chadwick, M. Herman, B. Jansky, I. Kodeli,
- A. Koning, L. Leal, M. Majerle, A. Plompen, D. Rochman, P. Talou, A. Trkov, ...

INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR)

Nuclei Considered:

Content

I. Oxygen: our (not completed yet) validation results also presented as <u>EFFDOC-13XX</u>, NEA Data Bank, Nov 2017

II. Iron: a) continuation of our recent work presented as <u>JEFFDOC-1851 = EFFDOC-1319</u>, Apr 2017; <u>EFFDOC-1303</u>, Dec 2016

> b) MC propagation of TENDL-2017 random files to Covariancies for n & γ-leakage energy spectra first time presented at <u>TALYS/TENDL Workshop</u>, Nov 2017, Prague; then <u>EFFDOC-13XX</u>, Nov 2017

III. Uranium: revisiting our old validation presented as a contribution to ND-2004 <u>AIP Conf. 769(2004)67</u>, Santa Fe, Oct 2004

For these Nuclei following Evaluated Transport Data are under testing:

- ENDF/B-VII.1 and ENDF/B-VIII.0 (= VIII.β4, CIELO)
- JEFF-3.3T4 and "JEFF-4.0T1" (only ⁵⁶Fe & ⁵⁴Fe L. Leal' work for next JEFF)
- TENDL-2017 evaluation and BMC random files (only Fe stable isotopes)

Tools used: - File processing by NJOY-2012.82 (from LANL web) or .99 (NEA Data Bank)

- MC simulation of considered benchmarks by MCNP-6.1 (for TOF measurements: TOF was simulated then transformed to Energy Spectra)
- dedicated f.95 subroutines for post processing of simulation results

I. Oxygen

Experiments with Liquid Oxygen involved in present analysis:

Lab Years	Source: <energy></energy>	No. of Spheres: Wall Thickn., cm	Methoda	Detector, Threshold	Numerical Data from
FNS 1991	D-T: ≈ 14 MeV	Cylinder: thick = 20 cm	Time of Flight (TOF)	<i>Leaking Neutrons:</i> NE-213 > 50 keV	Y. Oyama et al. SINBAD <u>NEA-1553/61</u>
LLL 1976	D-T: ≈ 14 MeV	1 sphere: Wall ≈ 10 cm	Time of Flight (TOF)	<i>Leaking Neutrons:</i> Pilot B > 1.6 MeV	L. Hansen et al. NSE 60(1976)27 C. Wong UCRL- 51144(1971)
ORNL 1967	Reactor Fission : ≈ 2.1 MeV	Cylinder: length = 61, 92 cm (?), 152 cm (available)	Pulse Height (PH)	Uncollided Neutrons (pure transmission): NE-213: 1.9 - 8.6 MeV	<i>C .Clifford et al.</i> <i>SINBAD</i> <u>NEA-1517/59</u>

Additionals/Comments:

 - liquid Oxygen Transmission experiment (En = 20 - 30 MeV) in progress at NPI/Rez, M. Majele et al. EFFDOC-1323, Apr 2017
 - no gamma-leaking measurements ! (then look what we have for water ?)

I. Oxygen (1): FNS/JAERI, 1991

Neutron scattering benchmark with pure Oxygen, <u>NEA-1553/61</u>:

Neutron Leakage Spectra at 0, 12, 25, 42, 67 deg. from Liquid Oxygen Disc ($\mathcal{L} = 20 \text{ cm} \times \emptyset60 \text{ cm}$) irradiated by pulsed 14 MeV source

Description of Experiment is available in: - e.g.: Y.Oyama et al., NDST 1991, p.337; Fig.3 =>

- Details & Numerical Data including author's MCNP input - in SINBAD

Fig.3 Calculational model for MCNP

Essential experimental details which impact on modelling and conclusion:

- measured by TOF which was also represented in MCNP simulations
- background was measured/subtracted by filling collimator hole with iron/polyethylene plugs
- efficiency of NE-213 detector was not measured but was MC-calculated by authors

Our validation results of current evaluations on next slide (all O isotopes are included in MC) =

I. Oxygen (1): Neutron Leakage from JAERI cylinder with D-T source

<u>Findings</u>: - JEFF-3.3T4 = ENDF/B-VII.1 and ENDF/B-VIII.0 are identical except ≈5% difference <u>only in 3 – 7 MeV</u>, where ENDF/B-VIII.0 trends to unity

I. Oxygen (2): LLL pulsed sphere with D-T source, 1967

Observations:

- 1st collision dominates
- ENDF/B-VII.1 is practically identical to ENDF/B-VIII.0 however gives ≈2% more <u>only for 4 - 8 MeV</u> (similar to what we saw for FNS/JAERI slab)
 - both confirm 14 MeV transmission but overpredict secondary neutrons 4-9 MeV (<u>it similar as FNS shows at 0 - 25 deg</u>)
- Long Terma Int. Collaboration, 18 21 Dec 2017, IAEA, Vienna

I. Oxygen (3): ORNL, Tower Shielding Facility, 1967

Uncollided transmission through Liquid Oxygen (length: 24in = 60.96 cm & 36in = 91.44 cm; dia: 4in = 10.16 cm) irradiated by TSR-II reactor spectrum ranged 1.9 to 8.6 MeV

BEAM CENTERLINE ≈78 IN. ABOVE CONCRETE PAD.

Fig. 1. Schematic diagram of experimental arrangement.

Description of Experiment is available in:

- e.g.: C.Clifford et al., NSE 27(1967)299; E.Straker ORNL-TM-2242(1968), -3868(1972)
- SINBAD <u>NEA-1517/59</u>: description + numerical data (only 60 in. = 152,4 cm), no MCNP model

Our preliminary results on next slide (all O isotopes are included in MC) =>

I. Oxygen (3): ORNL, Tower Shielding Facility, 1967 (cont.)

Observations but with preliminary set-up Model:

- This Reactor Spectrum Transmission Experiment indeed <u>sensitive only to Uncollided Neutrons</u>, i.e. to σ_{tot} : the fraction of Collided Neutrons seen by detector amounts only $\approx 5 \ 10^{-6}$
- It is <u>insensitive to the change of Oxygen Temperature</u> from boiling 90.2°K (-183°C) to room one: σ_{tot} changes only below 1 eV
- 152 cm of liquid Oxygen reduce Neutrons by 10^{-4} !, $\Delta\sigma/\sigma = (n \mid \sigma)^{-1} \Delta T/T = 6.5 \Delta T/T$! e.g.: <u>10% change of $\Delta T/T$ will demand $\Delta\sigma_{tot} \approx 0.65$ b</u> !
- JEFF-3.3T4 is practically identical to ENDF/B-VII.1

- ENDF/B-VIII.0 gives 10% less then VII.1 <u>only for 5-8 MeV</u> or similar trend which we observe for FNS/JAERI slab and LLL sphere

II. Iron, the first part: Secondary Neutron Validation

II. Iron (0): overview of

Experiments involved in the present analysis:

Lab Years	Source: <energy></energy>	No. of Spheres: Wall Thickn., cm	Method	Detector, Threshold	Numerical Data from
IPPE 90-98	D-T: ≈ 14 MeV	5 spheres: Wall = 2.5, 7.5, 10.0, 18.1, 28 cm	Time of Flight (TOF)	<i>Neutrons:</i> p-Ter.scint. > 50 keV	<i>S.Simakov et al.</i> SINBAD Fusion: <u>NEA-1553/75</u>
IPPE 1985	²⁵² Cf: ≈ 2.1 MeV	6 spheres: Wall = 4, 9, 19, 23, 29, 34 cm	Pulse Height (PH)	<i>Neutrons:</i> H-prop. 5 – 700 keV Stilben 0.2 - 17 MeV <i>Gammas:</i> Stilben 0.4 - 10 MeV	L.Trykov et al. <u>ICSBEP/DICE</u> : ALARM-CF_FE- SHIELD-001
LLL 1976	D-T: ≈ 14 MeV	3 spheres: Wall ≈ 4, 13, 22 cm	Time of Flight (TOF)	<i>Neutrons:</i> NE-213 > 1.6 MeV	L.Hansen et al. NSE 60(1976)27 C.Wong UCRL- 51144(1971)
LLL 1990	D-T: ≈ 14 MeV	1 sphere: Wall ≈ 4 cm	Time of Flight (TOF)	<i>Neutrons:</i> NE-213 > 1.6 MeV <i>Gammas (e-Recoils):</i> NE-213 > 0.255 MeV	E.Goldberg et al. NSE105(1990)319
VNIITF 1991	D-T: ≈ 14 MeV	1 sphere & 1 semi-sphere: Wall = 5 cm	Time of Flight (TOF)	Neutrons: Stilben > 0.25 MeV Gammas (e-Recoils): Stilben > 0.35 MeV	<i>A.Saukov et al.</i> SINBAD Fusion: <u>NEA-1517/74</u>

Long Terma Int. Collaboration, 18 - 21 Dec 2017, IAEA, Vienna

II. Iron (2): Comparison of IPPE (28cm) and LLL (22cm) spheres with D-T pulsed source: <u>Neutron leakage</u>

IPPE & LLL Fe spheres with D-T source

Observations from comparison of LLL (Wall = 22cm) and IPPE (Wall= 28 cm):

- LLL: Neutrons > 1.6 MeV (for convenience of comparison I converted original ToF spectra in Energy ones and folded with Gauss)
- IPPE: Neutrons > 0.1 MeV
- <u>both</u>: show <u>similar C/E in overlapping energies</u>,
 e.g. 4 10 MeV is overestimated by ENDF/VII.1,
 where ENDF/B-VIII.0 performs better

II. Iron (3): Results for IPPE Fe sphere (Wall=29 cm) + ²⁵²Cf(s.f.),

Neutron Leakage

Before MCNP simulation we modified MCNP input given in ICSBEP/Alarm-Cf_Fe-Shield-001:

- ²⁵²Cf(s.f.) source neutron spectrum (given as Watt with Froehner parameters) was replaced by PFNS Standard (Mannhart evaluation), vp = 3.7590
- and we added delayed neutrons (vd = 0.0086) with DFNS spectrum from ENDF/B-VII.1

Observations from C/E comparison:

- JEFF-3.3T4 looks even more better than others
- possible reasons for underestimation (σtot, angular distribution ...) by ENDF/B-VIII.0 were studied

II. Iron, the second part:

- Secondary Gammas Validation and
- problem of L.Trykov' Benchmark (ALARM-CF_FE-SHIELD-001)

L. Trykov et al. Atom Energy, 98(2005)50 (highlighting by couloirs is my): "The experimental fluxes of >0.8 MeV neutrons are, for the most part, greater than the computed values, and the fluxes of >0.35 MeV photons are also greater than the computed values. The <u>differences reach a factor of 2–3</u>":

TABLE 2. Characteristics of the Neutron and Photon Spectra from Spherical Iron Models with a ²⁵²Cf Source at the Center

Diameter of spherical	Flux of >10 keV neutrons/source neutron			Flux of >0.35 MeV p	hotons/source neutron	Average energy of the photon spectrum, MeV	
model, cm	Experiment	Calculation		Experiment	Calculation	Experiment	Calculation
20	0.98	0.995			0.482		
40	0.97	0.988		0.112	0.0657	1.10	1.21
50	0.96	0.982		0.086	0.0310		
60	0.94	0.975		0.049	0.0186	1.59	1.34
70	0.91	0.965		0.035	0.0120	1.91	1.57
10	0.85	0.908		0.0165	0.00651	3.13	2.61

What could be a reason for differences between L.Trykov experiment and calculations by factor 2–3 for leaking Gammas, when for leaking neutrons - it is within 10% (???)

II. Iron (1): IPPE bare ²⁵²Cf source of <u>Gammas</u> vs. others

²⁵²Cf(s.f.) Gamma Multiplicity: L.Trykov (ICSBEP, ...) vs. other known data

Observations on Gamma to Neutron Multiplicities ratio Mg/Mn for ²⁵²Cf(s.f.), Eγ > 100 keV:

- all known measurements (Cf fission chamber) and theory \approx (8 10)/3.7676 = (2.1 2.7) it's truth !
- Trykov/Alarm-Cf-Fe-Schield-001 (encapsulated Cf) ≈ (
- ≈ (18 20)/3.7676 = (4.7 5.3) why ?

II. Iron (1): IPPE bare ²⁵²Cf source of <u>Gammas</u> vs. others (cont.)

²⁵²Cf(s.f.) <u>Gamma Energy Spectrasule Institute of Technology</u> Trykov (ICSBEP, ...) vs. other known data

Looking on these spectral data I did following:

1. from comparison of g-spectra (Eg = 0.5 - 3 MeV) from L.Trykov' bare Cf source (corrected for attenuation in CuFe capsule) and known PFGS there was found Normaliz. Factor = 0.33 ± 20%

2. this Factor was applied to all Iron g-leakage spectra measured by L.Trykov (all slides on next slides show his data after correction)

3. in MCNP input file the ABBN-93 g-spectrum was replaced by one derived from independent measured PFGS (< 1 MeV) and P.Talou' modelling (> 1 MeV)

NB. Additional verifications of such correction against independent measurements of g-leakage from encapsulated Cf source and Fe spheres are highly needed

II. Iron (1): Results for IPPE bare ²⁵²Cf(s.f.) source:

II. Iron (1): Results for IPPE Fe sphere with ²⁵²Cf(s.f.), <u>Neutron</u> and <u>Gamma</u> Leakage vs. Wall Thickness

Observations:

status is worse than for neutrons

Observation for differential Gamma spectra:

 Differential Experimental γ-ray production spectra for Fe(n,xγ) reaction at neutron energies typical for Cf(s.f.) transmission benchmark do support the latest evaluations ENDF/B-VII.1, -VIII.0 and TENDL-2017

II. Iron (3): Independent Experiment for Gamma leakage: VNIITE hemi- and spheres with D-T source

whole sphere: ENDF/VII.1 looks almost perfect and better than ENDF/B-VIII.0

- back hemi-sphere: both ENDF/VII.1 and ENDF/B-VIII.0 overpredict by 30-150%

5

7

Fe back-hemisphere:

ENDF/B-VII.1

2.0

ш 1.5 О

1.0

0.5

0.3

Fe sphere:

0.5 0.7

ENDF/B-VIII.0

ENDF/B-VII.1

1

2

Leaking Gamma Energy, MeV

3

II. Iron, the third part:

straightforward Monte-Carlo propagation of Cross Section Uncertainties to Clean Benchmark Response Covariances II. Iron: from TENDL-2017 random files to Covariancies for Energy Spectra of Neutrons and Gammas leaking from Iron Spheres fed by ²⁵²Cf(s.f.) source

- > <u>Propagation Method implemented:</u>
- 1 + 500 TENDL-2017 Bayesian Monte Carlo (BMC) random files for each stable Fe isotope were provided by *A.Koning and D.Rochman*
- all were processed to ACE files by NJOY2012.82
- MCNP-6 simulation of neutron-gamma transport was re-run 1 + 500 times each run (1.E+9 events to reduce statistical uncertainty well below 1%) takes ≈ 3 min on 300 CPUs of KIT server

total Wall time consumed was ≈ 16 hours (*i.e., it is a feasible task* !)

- neutron and gamma leakage spectra have been read-in from 501 MCNP output files to compute Covariancies Matrices
- Example of Application:
 - IPPE Iron sphere (R/r = 30/1cm, dia = 60 cm) with ²⁵²Cf(s.f.) source: results - on the next 2 slides =>

II. Iron: TENDL-2017 and Covariance propagation for IPPE Fe sphere with Cf source: <u>Neutron Leakage</u>

10 20

3

10¹

0⁻¹

10⁻³

10⁻⁵

1.2

1.1

1.0

0.9

0.8

0.7

C/E n-Leakage

'Fe)

ENDF/B-VIII.0

ENDF/B-VII.1

0.3

Neutron Energy, MeV

0.1

0.01 0.03

n-Leakage, 1/MeV/n-Source

Findings for n-Leakage: - Uncertainties (≈ 2-20%) from TENDL-2017 are comparable with Experimental - E-E correlations will play role below 100 keV, above 1 MeV – no correlation

0.01

0.03

0.1

0.3

3

10

- TENDL-2017 underestimates Measurements: seem it lacks (n,γ) to ground state

- E-E correlations will play role in whole energy range 100 keV - 10 MeV

III. Uranium: Secondary Neutrons and Gammas Validation

III. Uranium (0) – overview of

Experiments involved in the present analysis:

Lab Years	Source: <energy></energy>	No. of Spheres: Wall Thickn., cm	Method	Detector, Threshold	Numerical Data from
IPPE 90-91	D-T: ≈ 14 MeV	1 sphere: Wall = 8.0 cm	Time of Flight (TOF)	<i>Neutrons:</i> Stilben > 0.5 MeV	S.Simakov et al. <u>AIP Conf.</u> <u>769(2004)67</u>
IPPE 1998	²⁵² Cf: ≈ 2.1 MeV	1 sphere: Wall = 8.0 cm	Time of Flight (TOF)	<i>Neutrons:</i> Stilben 0.5 - 17 MeV	S.Simakov et al. <u>AIP Conf.</u> <u>769(2004)67</u>
LLL 1976	D-T: ≈ 14 MeV	2 spheres: Wall ≈ 3.2, 10.4 cm	Time of Flight (TOF)	<i>Neutrons:</i> NE-213 > 0.010 MeV Li-glass 10keV - 1MeV	L.Hansen et al. N.Tech 51(1980)70 C.Wong UCRL- 76263(1971)
LLL 1990	D-T: ≈ 14 MeV	1 sphere: Wall ≈ 3.2 cm	Time of Flight (TOF)	Neutrons: NE-213 > 1.2 MeV Gammas (as e-recoils): NE-213 > 0.255 MeV	E.Goldberg et al. NSE105(1990)319
VNIITF 1991	D-T: ≈ 14 MeV	1 sphere & 1 semi-sphere: Wall = 5 cm	Time of Flight (TOF)	Neutrons: Stilben > 0.25 MeV Gammas: Stilben > 0.35 MeV	<i>A.Saukov et al.</i> SINBAD Fusion: <u>NEA-1517/74</u>

III. U (1): Results – Neutron Leakage from IPPE Sphere with D-T source

III. U (2): Results - <u>Neutron</u> leakage from IPPE sphere

with ²⁵²Cf source

Observations:

- ENDF/B-VIII.0 and ENDF/B-VII.1 perform similarly well

III. U (3): Results - Gamma leakage from VNIITF hemi- and whole

Observations:

- first results - no conclusion yet, the experiment set-up models has to be checked

General Summary (details for each Nuclei - in proper sections)

- Iatest versions of ENDF, JEFF, TENDL evaluations for O, Fe and U are currently under validation against known clean benchmarks driven by neutron sources D-T, Cf and fast fields created at reactors
- quantities analyzed/tested are neutron and gamma leakage, uncollided neutron transmission
- relevant experimental benchmarks are available in SINBAD, ICSBEP or literature; however in some cases the complete information about measurements are not presented in these resources that prevent the correct modelling and concluding nowadays
- the main purposes of this work was to check <u>whether independent</u> <u>benchmarks as well as differential XS indicate the similar trend for potential</u> <u>corrections/adjustments</u>
- we generally saw this however excepting the case of L.Trykov' measurements of γ-leakage from Iron spheres with Cf-source: γ-spectra seem have to be downscaled by factor ≈3 to reach agreement with other differential and integral measurements (? - still need confirmation ! - additional independent measurements will be decisive)
- XS uncertainties (presented as TENDL-2017 randoms) were MC propagated to Covariancies of *n*- and γ-leakage spectra from Fe sphere fed by ²⁵²Cf