

Faire avancer la sûreté nucléaire

WPEC - SG45: procedure for the validation of IRSN criticality input decks

LECLAIRE Nicolas © IRSN

May, 14th 2018

Contents

1. IRSN calculations with MC codes

- 2. Validation database
- 3. Procedure
 - a) Construction of input decks
 - b) Data relating to chemical data
 - c) Geometry and simulation options
 - d) Verification check lists
 - e) Classification in validation database


```
* I.R.S.N/SNC *

* APOLLO2 MORET 5

* VALDUC *

* VALDUC *

* I.CS8E volume 1 *

* révision 0 *

* CATEGORE : SOLUTION *

* TS N 239PU - H = 3.85 N *

* REPLECTEUR EAU (20 cm) *

* kaff(exp) = 1.000 +/- 0.00229 (1 signa) *

* korf (exp) = 1.000 +/- 0.00229 (1 signa) *

* writer: N. LECLA RE reviewer. 0, POULLOT *
```

IRSN calculations with MC codes

Use of CRISTAL criticality package

- 3 calculation routes:
 - APOLLO2-MORET 5
 - Using the APOLLO2 deterministic code for the generation of homogenized, self-shielded cross sections and flux with p_{ii} method
 - MORET 5.B.1 for the 3D transport calculation
 - » Used by criticality safety assessment teams
 - » Used by criticality safety practitioners outside IRSN
 - » Used by research and development team: validation of CRISTAL
 - APOLLO2-Sn: 1D or 2D calculation
 - TRIPOLI-4: continuous energy 3D transport calculation (reference route)

Use of the MORET 5 continuous energy code for research

- Along with JEFF-3.1.1, JEFF-3.2, ENDF/B-VII.1... at ACE format
 - Homemade processing using the GAIA 1.1 tool based on NJOY2016.03
- By research and development teams
 - Testing last nuclear data libraries: JEFF-3.3, ENDF/B-VIII.0
 - Use of sensitivity capability in relation with GLLSM in MACSENS and TSURFER

Validation database

CRISTAL package APOLLO2-MORET 5 route

- More than 2200 experimental cases
 - Various criticality safety applications covering the whole management of fuel cycle
 - In keeping with other codes from CRISTAL package (APOLLO2-Sn and TRIPOLI-4): maximum of common cases

MORET 5 continuous energy code

- More than 1200 experimental cases for criticality issues
 - Some in common with APOLLO2-MORET 5
 - Data of interest: mainly k_{eff}
- Ever growing database for reactor physics applications
 - Data of interest: k_{eff}, reaction rates, kinetics parameters, fluxes, ...

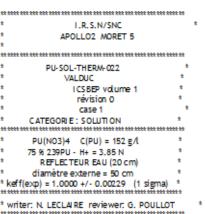
Under QA procedure

- Independent review of input decks saved on Gforges platform
 - Signature by author and reviewer of check-list

Construction of input decks

Name of the input deck follows ICSBEP nomenclature

NEA


- Ex: PU-SOL-THERM-022-d.c01: solution of plutonium nitrate in thermal energy spectrum, series 22, case 1 and detailed model
 - Differentiation between detailed and simplified model
 - Number of case in a series consistent with what is given in section 3 of ICSBEP Handbook

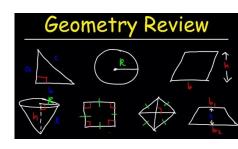
Cartridge describing the configuration

- Chemical and geometrical characteristics, category with respect to the validation database ordering (POWDER, METAL, SOLUTION, LATTICE...`
- Benchmark k_{eff} and associated uncertainty (1 σ , 2 σ , 3 σ ?)
- Name of laboratory
- Simplifications: missing isotopes?
- Review number of ICSBEP
- Writer and reviewer, company, date of review, signature

Input decks APOLLO2-MORET 5

Many comments to make clear what the geometry is

Data relative to chemical media


Corresponding to section 3 of benchmark

- If natural isotope, use natural if available
- If missing isotopes in the library, it is recommended to forget it and not to replace it by another one unless an equivalence in terms of reaction rates has been proved
- If natural isotope split into isotopes, use the isotopes
- Indicate when isotopes are omitted
- Chemical link to model the thermalization $S(\alpha, \beta)$
 - H-H₂O, D-D₂O, Be-BeO, Zr-ZrH, H-ZrH

Geometry and Simulation options

- Specify if detailed or simplified model
- Description of geometry based on section 3

- If missing data, look at section 1
- Give explicit description in the comments for each volume
- Simulation options
 - Number of neutrons per batch must not be under-estimated
 - At least 10000 neutrons for small criticality geometry
 - Up to 100000 neutrons for reactor physics geometry
 - Number of batch depends of the target Monte Carlo standard deviation
 - In MORET, the MC standard deviation is chosen so that the combined standard deviation does not exceed by 10% the experimental uncertainty

Verification

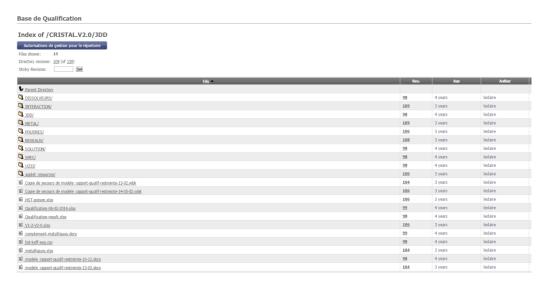
- Can be done either on the printed version of the input deck or on electronic version with a comparison tool
 - Corrections to be made indicated on printed version
 - Signature and date of verification of the reviewer
 - Comments of the author after verification and signature
- In paralell, a check list is created
 - First part filled by the author
 - Description of the benchmark
 - Second part filled by reviewer
 - Calculated k_{eff} and MC standard deviation
 - Platform on which calculation has been launched
 - Simulation options
 - Number of neutrons per batch, number of batches, Chi2 test
 - Eliminate transient by removing 100 first steps
 - Position of sources
- Electronic and paper version of input decks transmitted to validation database manager

Check List

To be filled by the author									
Name of series									
Category									
Case n°									
Reference of description									
N° + Revision date	Revision X of								
Author									
Date									
Reviewer									
Experimental k _{eff}									
Δ experimental									
Δ experimental / σ experimental									
Known confidence interval?									

Check List

To be filled by reviewer of the benchmark									
Procedure respected?									
PSN-EXP/SNC/2016-406									
Cartridge filled correctly?									
Name of files?									
Calculation route									
Platform									
Calculated k _{eff}									
σ calculation									
<u>Simulation criteria</u>									
Number of batches MINI > 150?									
Number of neutrons per batch									
Apparent convergence									
Khi 2 test: 6/6?									
Consistent estimators?									
σ(calcul) < 0,458 x									
σ(experimental) ?									
Consistent between cases									
Position of sources?									
Remarks									
DATE AND SIGNATURE AUTHOR:	DATE AND SIGNATURE REVIEWER:								

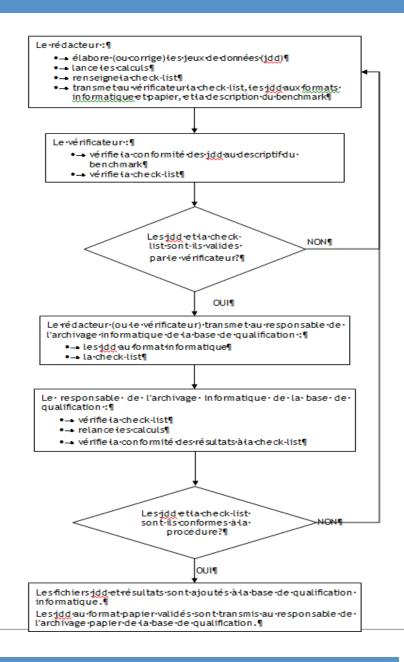

Classification in validation database

Under Gforges: management of configurations

- Various validation database: CRISTAL V2.0, CRISTAL V1.2
- Date of modifications

Various folders

- INPUT DECK
- LISTING
- GRAPH
- RESUME
- OUTPUT.XML



Tree classification in each folder

- Type of medium: 8 categories: powder, lattice, solution, dissolvor, SPEC, U233, metal, interaction ...
 - ICSBEP identifier
 - » Case Number
 - » Input

Flowchart

Thanks for your attention!!

Questions ??

