DE LA RECHERCHE À L'INDUSTRIE

GENERATION AND USE OF TSL COVARIANCE MATRIX : H(H2O) CONTRIBUTION CEA, DEN CADARACHE

G. Noguere, J.P. Scotta, P. Tamagno, G. Truchet CEA DEN Cadarache, Saint Paul Les Durances, France

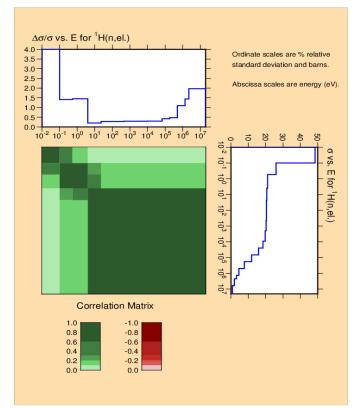
J.I Marquez Damian

Neutron Physics Department and Instituto Balseiro, Centro Atomico Bariloche, CNEA, Bariloche, Argentina

www.cea.fr

15 May 2018, NEA, Paris

Description of the method implemented in the CONRAD code for calculating covariance matrix between model parameters \Rightarrow LEAPR parameters (JEFF-3.1.1)


	Contents lists available at ScienceDirect	
	Annals of Nuclear Energy	
ELSEVIER	journal homepage: www.elsevier.com/locate/anucene	internet or an and a second se

Annals of Nuclear Energy 104 (2017) 132-145

Covariance matrices of the hydrogen neutron cross sections bound in light water for the JEFF-3.1.1 neutron library

G. Noguere^{*}, J.P. Scotta, C. De Saint Jean, P. Archier CEA. DEN. DER. Cadarache. F-13108 Saint Paul les Durance. France

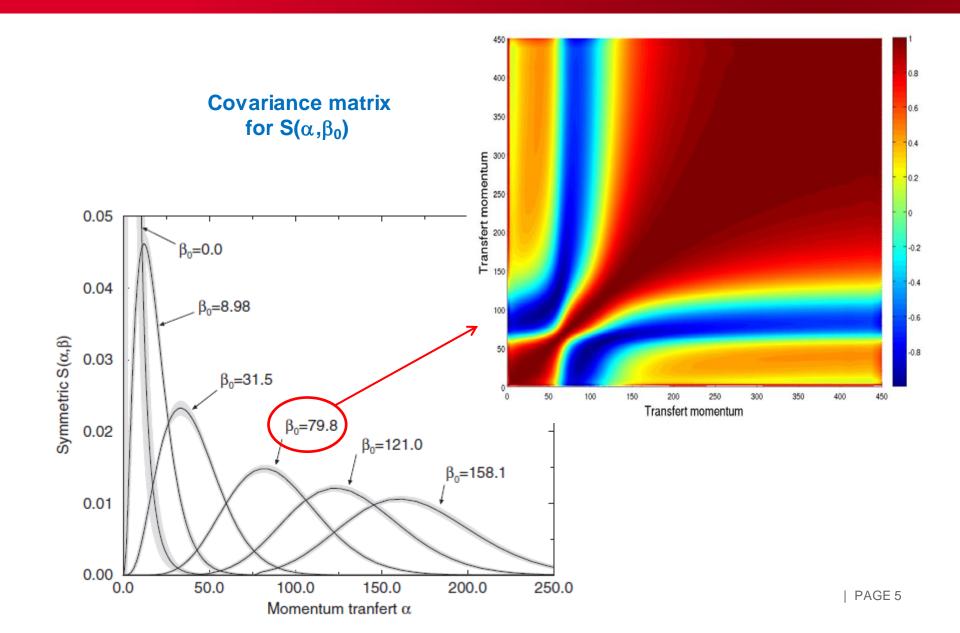
Full covariance matrix on the elastic scattering cross section of H1 in H2O from thermal to MeV energy range by using **contraints on the bound cross section**

Final results after the retroactive analysis and ZVP treatment

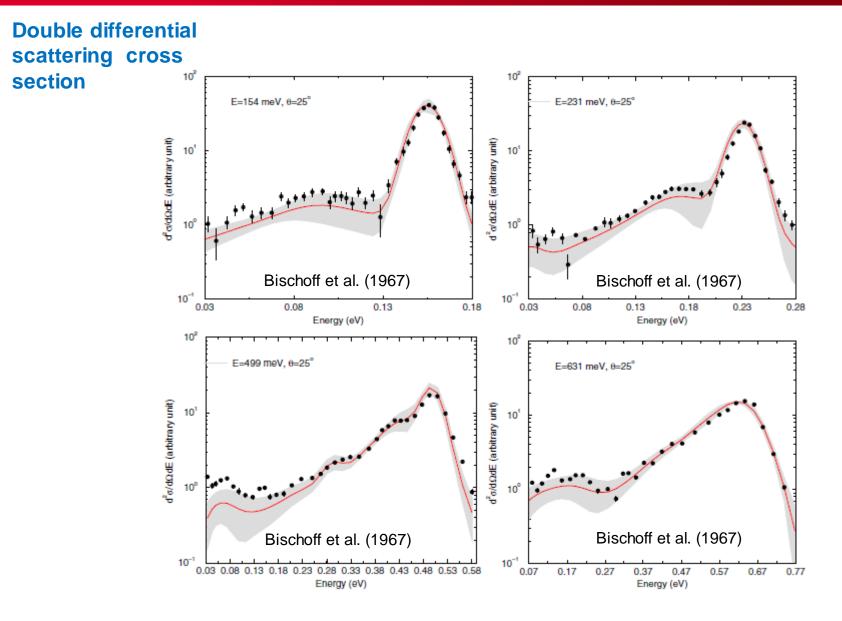
- Free model parameters x
 - Fixed model parameters θ with known uncertainties

Parameters	Values	Rel. unc.	Correlation matrix							
$ \begin{array}{c} $	$\begin{array}{c} 1.000 \pm 0.241 \\ 20.478 \pm 0.041 \\ 1.000 \pm 0.186 \\ 205.0 \pm 6.0 \\ 436.0 \pm 36.0 \\ 0.0 \pm 1.5 \end{array}$	(24.1%) (0.2%) (18.6%) (2.9%) (8.3%)	100.0 -1.2 15.3 -1.2 2.3 0.0	100.0 14.2 0.0 0.0 0.0	100.0 6.0 45.7 0.0	100.0 0.0 0.0	100.0 0.0	100.0		

- Defect model parameter added after the ZVP treatment
- Experimental parameters not included in the covariance matrix (marginalization)

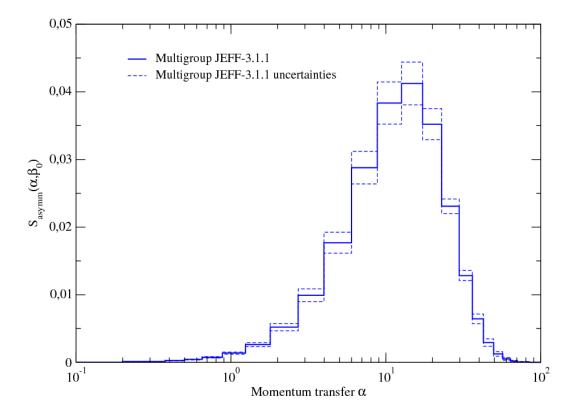

Final results after the retroactive analysis and ZVP treatment

Paramter	Value Relative posterior Posterior correlation m								mat	rix	
σ _o [nm]	0.31644	2.3%	100	-77	93	69	33	- 18	-64	83	-14
ε _o [KJ/mol]	0.77491	14.6 %		100	-71	-98	-85	53	97	-54	-32
q _H [e]	0.5564	3.2%			100	59	28	-2	-60	81	-18
d _{oн} [nm]	0.09419	6.3 %				100	89	-63	-96	44	38
D _{oH} [KJ/mol]	432.58	6.2 %					100	-63	-88	6	57
b _{он} [1/nm]	22.87	4.2%						100	51	-11	-28
⊖₀[°]	107.4	6.4%							100	-45	-49
k _θ [KJ/mol/rad²]	367.81	3.8 %								100	-14
a[nm]	0.13288	2.7%									100

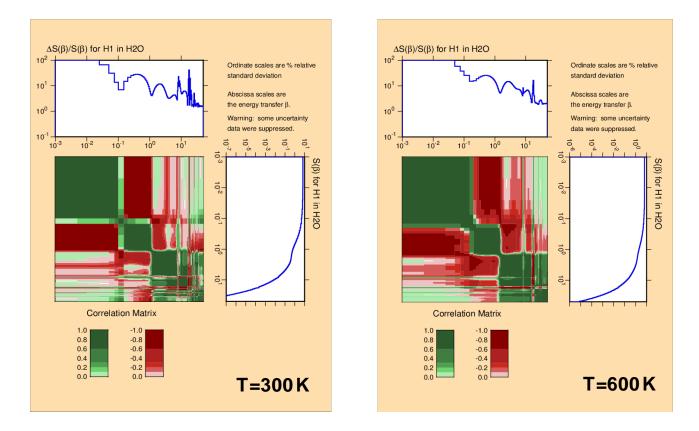

- The relative uncertainties oscillate between 2% to 15%
- The water physics might change due to such large uncertainties !
- Solution ⇒ produce covariances by including in the analysis physical properties of water and not only experimental neutron cross sections ⇒ not yet done !

DE LA RECHERCHE À L'INDUSTR

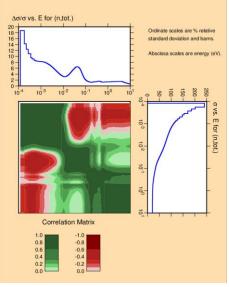
Propagation of the LEAPR parameter uncertainties

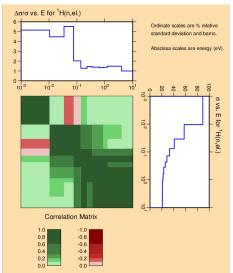


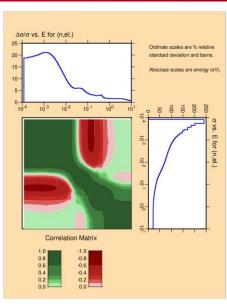
Propagation of the LEAPR parameter uncertainties



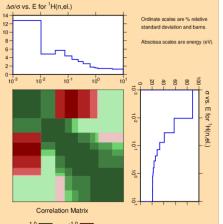
Because of the size of the $S(\alpha,\beta)$ matrix, it is not possible to create a full covariance matrix between the $S(\alpha,\beta) \Rightarrow$ we use a multigroup representation $S(\alpha_g\beta)$


The extreme multigroup representation is to average the $S(\alpha,\beta)$ over the α grid \Rightarrow **one-group description** $S(\langle \alpha \rangle,\beta)$

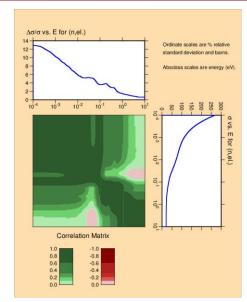

DE LA RECHERCHE À L'INDUSTRIE

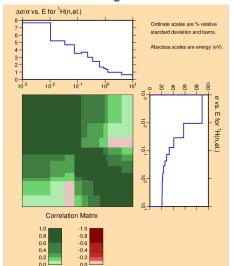

Cea

Covariance matrix for the elastic cross section

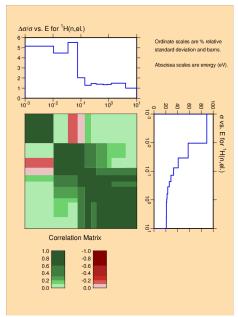


From LEAPR parameters




From S($\langle \alpha \rangle$, β) matrix

From S(α_g , β) matrix



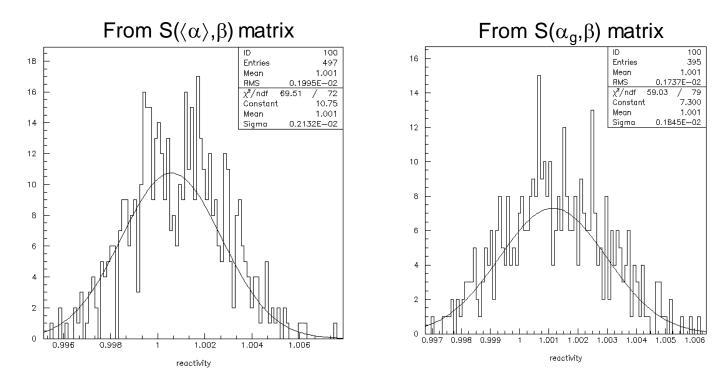
In theory, the IFP method implemented in the Monte-Carlo code TRIPOLI4 can be used to calculate the sensitivity to the elastic cross section and to the $S(\alpha_{g,\beta})$ or $S(\langle \alpha \rangle,\beta)$ elements

In practice, we are limited by the convergence of the IFP method for the $S(\alpha_{g,\beta})$ or $S(\langle \alpha \rangle,\beta)$ elements

 \Rightarrow For the moment, the IFP method of TRIPOLI4 can only be applied to the <u>elastic cross</u> section

In theory, the IFP method implemented in the Monte-Carlo code TRIPOLI4 can be used to calculate the sensitivity to the elastic cross section and to the $S(\alpha_{q},\beta)$ or $S(\langle \alpha \rangle,\beta)$ elements

In practice, we are limited by the convergence of the IFP method for the $S(\alpha_{g,\beta})$ or $S(\langle \alpha \rangle,\beta)$ elements


 \Rightarrow For the moment, the IFP method of TRIPOLI4 can only be applied to the <u>elastic cross</u> section

	IFP	Origin	of the covariance ma	atrix
IFP sensitivity	uncertainty	LEAPR parameters	S((α),β)	$S(\alpha_g,\beta)$
sensitivity S ₁ (σ _n)	±70 pcm	114 pcm	159 pcm	125 pcm
sensitivity S₂(σ _n)	$\pm10\text{pcm}$	130 pcm	161 pcm	132 pcm

The three covariance matrices provide nealy equivalent results close to 140 pcm

Propagation of the uncertainties : TMC method – PST001.1

Méthode de propagation	Origin of the covariance matrix						
weinoueuepropagation	S((α),β)	$S(\alpha_g,\beta)$					
Sensibilité IFP S ₂ (σ _n)	161 pcm	132 pcm					
Total Monte Carlo	213 pcm	184 pcm					

IFP and TMC provide nearly equivalent results \Rightarrow difference of 50 pcm

| PAGE 12

Decomposition of the keff uncertainty without the $S(\alpha,\beta)$ contribution

Isotope	FISSION	CAPTURE	ELASTIC	INELASTIC	NXN	NU	DISTRIBUTION	DISTRIBUTION_TH	TOTAL
H1		150	17						151
B10		26							26
O16		97	14	2					98
Zr90		11	72	4					72
Zr91		27	30	2					40
Zr92		27	20	2					33
Zr94		2	8	2					8
Zr96		2	6						6
U234	1	6	2						6
U235	104	174	13			276		142	371
U236		1							1
U238	29	165	83	38	18	32	9		195
TOTAL	108	303	118	39	18	277	9	142	465

Decomposition of the keff uncertainty with the $S(\alpha,\beta)$ contribution

Isotope	FISSION	CAPTURE	ELASTIC	INELASTIC	NXN	NU	DISTRIBUTION	DISTRIBUTION_TH	TOTAL
H1_H2O		150	105						183
B10		26							26
O16		97	14	2					98
Zr90		11	72	4					72
Zr91		27	30	2					40
Zr92		27	20	2					33
Zr94		2	8	2					8
Zr96		2	6						6
U234	1	6	2						6
U235	104	174	13			276		142	371
U236		1							1
U238	29	165	83	38	18	32	9		195
TOTAL	108	303	158	39	18	277	9	142	477

 \Rightarrow Low impact on the final uncertainty

What is needed for the propagation of the TSL uncertainties ?

Define a simple format to store the covariance matrix between the LEAPR parameters

- Easy to use for TMC calculations and deterministic sensitivity calculations
- If possible, covariance matrix between the MD parameters should be converted in covariance matrix between the LEAPR parameters

Define a multi-group format to store the covariance matrix between $S(\alpha_{\alpha},\beta)$

- Such a format is needed if TSL file is not created via LEAPR
- Can be used for TMC calculations
- Deterministic sensitivity calculation issues not yet solved
- Difficult to ensure that the matrix is still definite positive when it is stored in the file