

LA-UR-18-23855

Approved for public release; distribution is unlimited.

Title:	Validating Evaluated Uncertainties of the Neutron-induced Fission Cross-sections by the Neutron Standards Data Project in ENDF/B-VIII.0 and Summarizing the 239Pu PFNS Evaluation of ENDF/B-VIII.0
Author(s):	Neudecker, Denise
Intended for:	30th WPEC meeting, SG44, 2018-05-14/2018-05-16 (Paris, France)
Issued:	2018-05-03

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. viewpoint of a publication or guarantee its technical correctness.

Validating Evaluated Uncertainties of the Neutron-induced Fission Crosssections by the Neutron Standards Data Project in ENDF/B-VIII.0 and Summarizing the ²³⁹Pu PFNS Evaluation of ENDF/B-VIII.0 Denise Neudecker

UNCLASSIFIED

WPEC, SG44

May 14-16, 2018

Abstract

The ²³⁹Pu, ²³⁸U and ²³⁵U neutron-induced fission cross-sections and associated uncertainties in ENDF/B-VIII.0 [1] were provided by the "Neutron Standards Data" [2] project coordinated by the IAEA. The evaluated uncertainties increased in some energy ranges by a factor of 2 or more leading to significantly increased uncertainties on the criticality of specific critical assemblies [3]. This talk will highlight reasons why this increase of uncertainty is justified. The talk will also introduce the "Physical Uncertainty Boundary" [4] method which has been used to validate the size of these fission cross-section uncertainties independently.

This talk will cover as a second topic the evaluation of the ²³⁹Pu prompt fission neutron spectrum (PFNS) which is considered in ENDF/B-VIII.0.

[1] D.A. Brown et al., Nuclear Data Sheets Vol. 148, p. 1 (2018).
[2] A.D. Carlson et al., Nuclear Data Sheets Vol. 148, p. 143 (2018).
[3] M.B. Chadwick et al., Nuclear Data Sheets Vol. 148, p. 189 (2018).
[4] D.E. Vaughan et al., Los Alamos National Laboratory Report LA-UR-14-20441 (2014).

UNCLASSIFIED

Slide

Part 1: Validating Evaluated Uncertainties of the ²³⁹Pu(n,f) Cross-Sections by the Neutron Standards Data Project in ENDF/B-VIII.0

Denise Neudecker

Thanks to: B. Hejnal, F. Tovesson, D.L. Smith, M.C. White, D. Vaughan, R. Capote, TPC collaboration (K. Schmitt, N. Bowden, L. Snyder, R. Casperson, N. Walsh, S. Sangiorgio, W. Younes)

UNCLASSIFIED

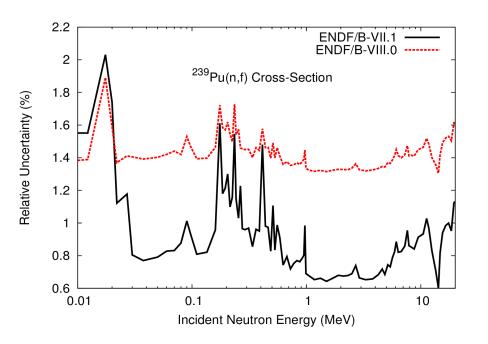
Validating increased evaluated uncertainties of the ²³⁹Pu(n,f) cs in ENDF/B-VIII.0

- Why should we validate increased ²³⁹Pu(n,f) cs uncertainties?
- Are there good reasons to increase the ²³⁹Pu(n,f) cs uncertainties from ENDF/B-VII.1 to ENDF/B-VIII.0?
- How can we validate evaluated ²³⁹Pu(n,f) cs uncertainties in ENDF/B-VIII.0?

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Why should we validate increased ²³⁹Pu(n,f) cs uncertainties?



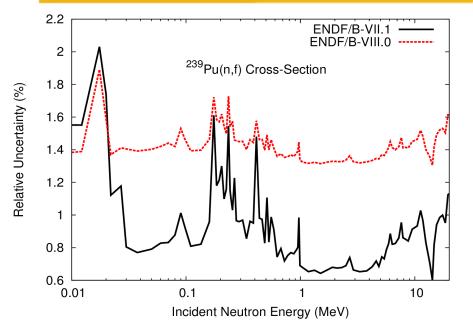
Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

²³⁹Pu(n,f) cross-section unc. were increased for ENDF/B-VIII.0 by expert judgment

²³⁹Pu(n,f) VII.1 unc. were considered to be unrealistically small. Analysis of unknown systematic unc. by the standards evaluation committee (A. Carlson et al., NDS (2018)) led to increased unc.

 239 Pu(n,f) cs strongly impacts k_{eff} of Pu-assemblies. Jezebel k_{eff} unc. due to (n,f) cs increased from 331 pcm to 903 pcm.


Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

LA-UR-18-

²³⁹Pu(n,f) cross-section unc. were increased for ENDF/B-VIII.0 by expert judgment

²³⁹Pu(n,f) VII.1 unc. were considered to be unrealistically small. Analysis of unknown systematic unc. by the standards evaluation committee (A. Carlson et al., NDS (2018)) led to increased unc.²³⁹Pu(n,f) strongly impacts k_{eff} of Puassemblies.

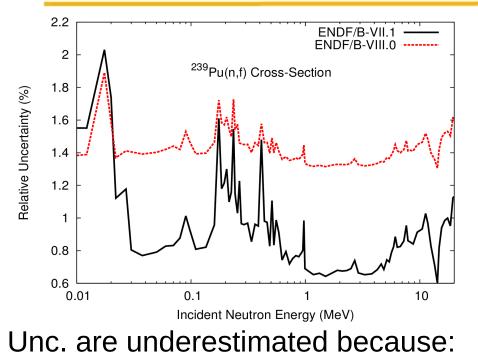
Unc. are underestimated because:

Unrecognized unc. across many data sets due to using same methods.
 Missing cross-correlations between experimental data.

 \succ Missing uncertainty sources for single experimental data sets.

UNCLASSIFIED

Are there good reasons to increase the ²³⁹Pu(n,f) cs uncertainties from ENDF/B-VII.1 to ENDF/B-VIII.0?


Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

LA-UR-18-

Example 2: ²³⁹Pu(n,f) cross-section unc. were increased for ENDF/B-VIII.0 by expert judgment

 239 Pu(n,f) VII.1 unc. were considered to be unrealistically small. Analysis of unknown systematic unc. by the standards evaluation committee (A. Carlson et al., NDS (2018)) led to increased unc.²³⁹Pu(n,f) strongly impacts k_{eff} of Puassemblies.

Unrecognized unc. across many data sets due to using same methods.
 Missing cross-correlations between experimental data.
 Missing uncertainty sources for single experimental data sets.

Operated by Los Alamos National Security, LLC for NNSA

We investigate those via a template.

UNCLASSIFIED

LA-UR-18-

A template of unc. typically encountered in fission cross-section measurements (LA-UR-17-29963):

Unc. Source	Typical range	Correlations	Cor(Exp ₁ ,Exp ₂)
Sample Mass	> 1%	Full	Possible (same sample)
Counting Statistics	Sample-dependent	Diagonal	0
Attenuation	0.02-2%	Gaussian	Likely
Detector Efficiency	0-0.3%, 1-2%	Full < 10 MeV	Likely, 0.5-1.0
FF Angular Distrib.	~0.1%	Gaussian	Likely, 0.75-1.0
Background	0.2 - >10%	Gaussian	Possible
Energy Unc.	1%, 1-2 ns	Arises from conv.	Technique-dependent
Neutron Flux	0%, >1%	Full-0.5	Technique-dependent
Multiple Scattering	0.2-1%	Gaussian	0.5-0.75
Impurit. in Sample	Sample-dependent	1.0-0.9	0.5-0.75
Dead Time	>0.1%	Full	0
· Los Alamos			

Operated by Los Alamos National Security, LLC for NNSA

NATIONAL LABORATORY

EST.1943 -

LA-UR-18-

UNCLASSIFIED

The template distinguishes between different measurement types.

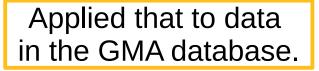
Unc. Source	Absolute	Clean Ratio	Indirect Ratio
Sample Mass	> 1%	Both Samples	Both samples
Counting Statistics	Sample-dependent	Both, combined	Both samples
Attenuation	0.2-2%	0.02-0.2%	0.2-2%
Detector Efficiency	1-2%	0-0.3%	1-2%, 0.5-1%
FF Angular Distrib.	~0.1%	Less than for abs.	~0.1%
Background	0.2 - >10%	0.2 - >10%	0.2 - >10%
Energy Unc.	1%, 1-2 ns	Combined	Both detectors
Neutron Flux	>1%	Cancels or small	Cancels or small
Multiple Scattering	0.2-1%	Reduced for abs.	0.2-1%
Impurit. in Sample	Sample-dependent	Both samples	Both samples
Dead Time	>0.1%	Both, combined	Both detectors

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-18-

This template can help evaluators and experimentalists estimate experimental unc.


- Templates were, e.g., developed for providing EXFOR data and uncertainties in the resonance region in F. Gunsing et al., INDC(NDS)-0647 (2013).
- Can provide guidelines for experimentalists what uncertainties need to be provided for an evaluation.
- Helps evaluators pinpoint cross-correlations between other experiments if the same template is used consistently.
- Helps <u>evaluators</u> pinpoint missing experimental unc. of single experimental data sets.

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

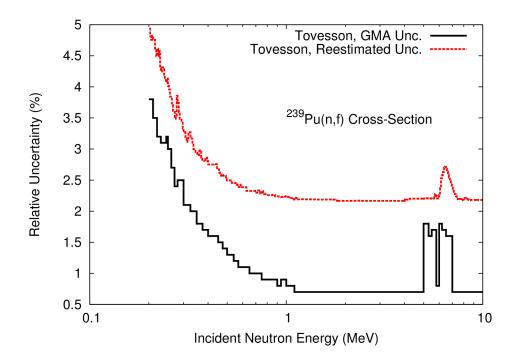
I A-UR-18-

Case 1, the absolute 239 Pu(n,f)/ 235 U(n,f) exp. with lowest unc. in the GMA database

Data Set	Data Type	$\operatorname{Min}\delta$	${\rm Max}\;\delta$	$\operatorname{Min} E$	$\operatorname{Max} E$	EXFOR #
611	absolute	1.0	1.0	1.45E+01	$1.45E{+}01$	
644	absolute	-2.0	-2.0	1.45E+01	$1.45E{+}01$	30634
615	absolute	2.1	-2.1	5.00E + 00	5.00E + 00	
1038	absolute	-2.3	7.7	1.00E+00	$5.50E{+}00$	30670
640	absolute	2.4	3.1	1.50E-01	9.60E-01	10314
620	absolute	2.8	-6.6	3.00E-02	9.80E-01	20567

Sample mass unc. should be ~1.5% questionably small!!!

8002	ratio absolute ²³⁵ U(n,f)	0.7	3.8	2.00E-01	1.30E+01	14271
602	ratio absolute ²³⁹ U(n,f)	0.8	6.8	2.53E-08	1.00E+01	
654	ratio absolute 235 U(n,f)	1.0	-5.7	2.40E-02	$7.50\mathrm{E}{+}00$	
685	ratio absolute $^{235}U(n,f)$	1.1	1.1	1.45E+01	1.45E+01	
653	ratio absolute ²³⁵ U(n,f)	1.2	6.9	1.20E-01	7.00E+00	40824
1014	ratio absolute ²³⁵ U(n,f)	1.3	1.6	8.50E-01	$6.00E{+}01$	13801
600	ratio absolute $^{235}U(n,f)$	1.7	27.4	8.50E-04	$3.00E{+}01$	10562
605	ratio absolute ²³⁵ U(n,f)	1.7	15.3	5.50E-03	$1.00E{+}00$	20363
608	ratio absolute ²³⁵ U(n,f)	2.0	12.6	4.50E-02	5.00E-01	21463
609	ratio absolute ${}^{235}U(n,f)$	2.0	2.1	1.00E+00	1.40E+01	21195
631	ratio absolute ²³⁵ U(n,f)	2.1	2.1	2.53E-08	1.50E-01	
1012	ratio absolute ²³⁵ U(n,f)	2.1	5.8	5.70E-01	$2.00E{+}02$	41455
			•			



Los Alamos	630	ratio shape ${}^{10}\mathrm{B}(\mathrm{n},\alpha)$	-2.3	5.0	2.53E-08	1.50E-01	
NATIONAL LABORATORY		UNCLASSIFIE	D				Slide
Operated by Los Alamos National Ser	curity, LLC for NNSA					ſ	IN I.VCOM

LA-UR-18-

E.g., a normalization uncertainty was overlooked for Tovesson et al. ²³⁹Pu(n,f)/²³⁵U(n,f)

This is the data set related to the ²³⁹Pu(n,f) cross-section in GMA with the lowest uncertainty!!!

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

LA-UR-18-

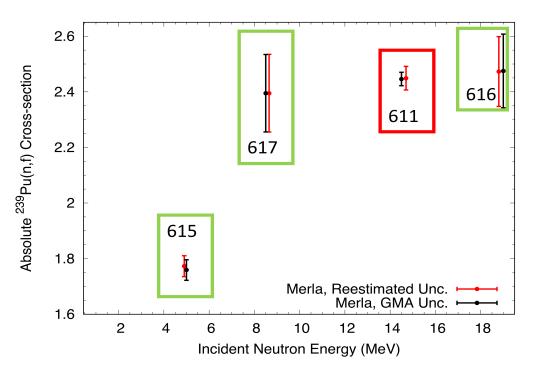
Case 2: the absolute measurement with lowest unc. in GMA is strongly correlated with 3 other GMA exp.

		Data Sol	Data Type	Min x	$M_{\alpha\nu} \delta$	Min E	$M_{av} E$	EVFOR #
This		611	absolute	1.0	1.0	1.45E+01	$1.45E{+}01$	
measurement	is	644	absolute	2.0	-2.0	1.45E+01	$1.45E{+}01$	30634
		615	absolute	2.1	2.1	5.00E + 00	5.00E + 00	
part of a series		1038	absolute	2.3	7.7	1.00E+00	5.50E + 00	30670
and correlated		640	absolute	2.4	3.1	1.50E-01	9.60E-01	10314
with 615-617.		620	absolute	2.8	6.6	3.00E-02	9.80E-01	20567
Also, sample								
		8002	ratio absolute ²³⁵ U(n,f)	0.7	3.8	2.00E-01	$1.30E{+}01$	14271
mass unc.		602	ratio absolute ²³⁵ U(n,f)	-0.8	6.8	2.53E-08	1.00E+01	
Should be 1%	,	654	ratio absolute ²³⁵ U(n,f)	-1.0	5.7	2.40E-02	$7.50\mathrm{E}{+}00$	
questionably		685	ratio absolute 235 U(n,f)	1.1	1.1	1.45E+01	1.45E+01	
		653	ratio absolute ${}^{235}U(n,f)$	1.2	6.9	1.20E-01	7.00E + 00	40824
small.		1014	ratio absolute ²³⁵ U(n,f)	1.3	1.6	8.50E-01	$6.00\mathrm{E}{+}01$	13801
		600	ratio absolute 235 U(n,f)	1.7	27.4	8.50E-04	$3.00E{+}01$	10562
		605	ratio absolute 235 U(n,f)	1.7	15.3	5.50E-03	1.00E + 00	20363
		608	ratio absolute ²³⁵ U(n,f)	-2.0	-12.6	4.50E-02	5.00E-01	21463
		609	ratio absolute 235 U(n,f)	2.0	2.1	1.00E+00	1.40E+01	21195
		631	ratio absolute ${}^{235}U(n,f)$	2.1	2.1	2.53E-08	1.50E-01	
		1012	ratio absolute 235 U(n,f)	2.1	5.8	5.70 E-01	2.00E + 02	41455
0								

ratio shape ${}^{10}\mathrm{B}(\mathrm{n},\alpha)$ 2.3

5.0 2.53E-08

|8| | 1.50E-01


Operated by Los Alamos National Security, LLC for NNSA

630

LA-UR-18-

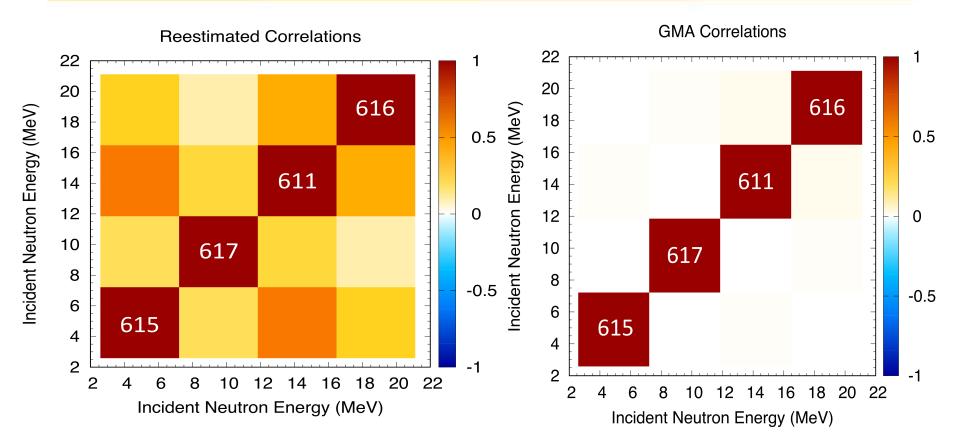
Case 2: the absolute measurement with lowest unc. in GMA has too small unc. & is strongly correlated

611 GMA unc.: 1%

611 Reestimated unc.: 1.7%

Sample mass unc. of 1% missing and background unc. of 0.5% missing.

Cross-correlations arise because same sample was used, same detector, same multiple scattering correction, etc.


Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

LA-UR-18-

Case 2: template helped to pin-point underestimated correlations in GMA

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-18-

These two cases of underestimated unc. are typical cases rather than exceptions!

GMA#	GMA unc.	Reestimated unc.	GMA#	GMA unc.	Reestimated Unc.
611	1.0	1.7	617	5.8	5.8
644	2.0	2.2	628	5.9	6.4
615	2.1	2.4	657	9.3	9.3
1038	2.3-7.7	2.3-7.7	521	2.3-4.8	3.4-5.6
640	2.4-3.1	3.3-4.3	589	2.9-3.9	3.7-14.0
620	2.8-6.6	3.5-6.7	671	4.3-25.8	5.5-26.0
622	2.8-7.0	3.6-7.3	8002	0.7-3.8	2.2-4.9
619	2.9	4.7	602	0.8-6.8	1.5-6.9
621	2.9-3.2	3.6-11.0	654+653	1.0-6.9	1.8-75.5
623	3.2-4.1	3.4-3.9	685	1.1	2.0
612	3.8-4.7	4.0-5.8	1014	1.3-1.6	1.7-2.6
672	4.9-5.4	5.4-5.5	536	0.7-6.5	1.0-7.3
616	5.4	5.1	1029	1.0-2.5	2.5-3.5
NATIONAL	LABORATORY	UNCLA	SSIFIED		Slide

Operated by Los Alamos National Security, LLC for NNSA

EST. 15

ARIADNE input decks in LA-UR-18-20767

If you order ²³⁹Pu(n,f) according to lowest unc. & type of data, the order of reestimated unc. changes

GMA absolute data	Reestimated
611	611
644	644
615	1038
1038	615
640	640
620	623
622	620
619	622
621	621
623	612
612	619
672	616

GMA ²³⁹ Pu/ ²³⁵ U	Reestimated
8002	602
602	1014
654+653	654+653
685	685
1014 N ^O	8002

Evaluated mean values and covariances are likely to change if new information is taken into account!!! An increased uncertainty compared to VII.1 is very likely!

Operated by Los Alamos National Security, LLC for NNSA

I A-UR-18-

UNCLASSIFIED

How can we validate evaluated ²³⁹Pu(n,f) cs uncertainties in ENDF/B-VIII.0?

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Physical Uncertainty Boundaries (PUBs) methodology by D. Vaughan and D. Preston

PUBs methodology (D.E. Vaughan, D.L. Preston, LANL Report LA-UR-14-20441 (2014)) was developed to **estimate the upper bounds** of a physical quantity **based on physics considerations** rather than optimization with physics models and experimental data. It was applied to estimate bounds of quantity of interests (QoI) of other physics areas.

It is used here to validate the increased ²³⁹Pu(n,f) cs uncertainties. This methodology cannot give us mean values!!!

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Using PUB methodology step-by-step

- 1) **Part** the QoI (here: ²³⁹Pu(n,f) cs) into its constituting independent sub-processes.
- 2) Establish the dominant sub-processes, i.e., those that contribute the most to the variability of the ²³⁹Pu(n,f) cs .
- 3) Answer: what are the **most extreme values** you could imagine **for the dominating sub-processes**? Or what is the most extreme variability on the ²³⁹Pu(n,f) cs you could imagine coming from the variability of the sub-process?
- 4) What is the **functional form** of the variability on the ²³⁹Pu(n,f) cs due to the dominant sub-processes?

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

(1) 239 Pu(n,f) cs in VIII.0 is evaluated based on exp. data only \rightarrow part an experiment into sub-processes

$$cs(E) = \frac{N(C(E) - C_b(E))\beta(E)\alpha(E)m(E)}{\epsilon(E)\varphi(E)d(E)} - \sum_i \zeta_i(E) \quad \text{with } \zeta_i - N_i cs_i(E)$$

- N ... number of atoms in the sample
- C ... total counts
- N_i... number of atoms from impurity
- ϕ ... neutron flux

Measured separately

d ... dead time correction m ... multiple scattering correction β ... attenuation correction a ... fission fragment angular distribution correction CS_i ... cross section of contamination Simulated or given by data

 ε ... detector efficiency C_{b} ... background counts Simulated and measured

UNCLASSIFIED

(2) From the template we establish which subprocesses contribute the most to the variability.

$$cs(E) = \frac{N(C(E) - C_b(E))\beta(E)\alpha(E)m(E)}{\epsilon(E)\varphi(E)d(E)} - \sum_i \zeta_i(E) \quad \text{with } \zeta_i - N_i cs_i(E)$$

N ... number of atoms in the sample

C ... total counts

N_i... number of atoms from impurity

 ϕ ... neutron flux

Measured separately

d ... dead time correction m ... multiple scattering correction β ... attenuation correction a ... fission fragment angular distribution correction cs_i ... cross section of contamination

Simulated or given by data

 ε ... detector efficiency C_b ... background counts Simulated and measured

UNCLASSIFIED

(3) I use the template to obtain extreme variability of ²³⁹Pu(n,f) cs due to variability in sub-processes

Unc. Source	Typical range	Correlations	Cor(Exp ₁ ,Exp ₂)
Sample Mass	> 1%	Full	Possible (same sample)
Counting Statistics	Sample-dependent	Diagonal	0
Attenuation	0.02-2%	Gaussian	Likely
Detector Efficiency	0-0.3%, 1-2%	Full < 10 MeV	Likely, 0.5-1.0
FF Angular Distrib.	~0.1%	Gaussian	Likely, 0.75-1.0
Background	0.2 - >10%	Gaussian	Possible
Energy Unc.	1%, 1-2 ns	Arises from conv.	Technique-dependent
Neutron Flux	0%, >1%	Full-0.5	Technique-dependent
Multiple Scattering	0.2-1%	Gaussian	0.5-0.75
Impurit. in Sample	Sample-dependent	1.0-0.9	0.5-0.75
Dead Time	>0.1%	Full	0

Well, actually these are not the most extreme uncertainties you can get on each sub-processes (you can always do something wrong in your experiments :-)) but a reasonable accuracy to which you can get each sub-processes with a standard measurement.

We believe that it is hard to describe the sub-processes with better accuracy.

UNCLASSIFIED

Slide

(4) What is the functional form of the subprocesses? A few examples.

- N: this is the same for the whole cross-section measurement, i.e., a linear coefficient of the crosssection.
- c: for E < 10 MeV, this is a constant factor, i.e., a linear coefficient of the cross-section. Then another functional form sets in.
- C_b : defined by a functional form with few parameters + nuclear data used in a code. I assume a Gaussian kernel.

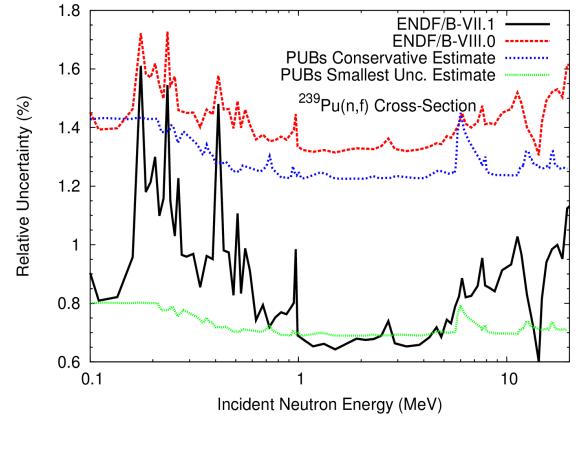
Operated by Los Alamos National Security, LLC for NNSA

Slide

UNCLASSIFIED

(5) Total bounds are obtained by considering correlations between experiments.

- Assess how unc. of each sub-process reduce if measured multiple times, i.e., are the uncertainties correlated between experiments? If "Yes", how high is the correlation? How many experiments are considered?
- Combine the resulting average uncertainties of each sub-process
- We cannot asses those uncertainties which were overlooked in all experiments because they use very similar methods. So while a reasonable bound it might not be the upper bound.



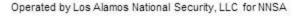
UNCLASSIFIED

Slide

(5) The conservative bound of PUBs is close to the ENDF/B-VIII.0 evaluated uncertainties.

UNCLASSIFIED

NNS


Slide

Conclusions:

- VIII.0 ²³⁹Pu(n,f) cs unc. were investigated and validated because they increased by more than a factor of 2 in some energy range impacting significantly k_{eff} unc. of specific assemblies.
- Are there good reasons to increase the ²³⁹Pu(n,f) cs uncertainties from ENDF/B-VII.1 to ENDF/B-VIII.0? YES! Uncertainties of single experimental data sets and correlations between different experiments are missing for many data sets underlying the standards evaluation. If the standards database is updated with this information, mean values and unc. will change likely.
- ²³⁹Pu(n,f) cs uncertainties in ENDF/B-VIII.0 were validated by PUBs methodology. VIII.0 unc. are are a bit higher than a conservative PUBs estimate.

UNCLASSIFIED

Part 2: Summarizing the ²³⁹Pu PFNS Evaluation of ENDF/B-VIII.0

Denise Neudecker

Thanks to: P. Talou, T. Kawano, R. Capote, D.L. Smith, T. Taddeucci, R.C. Haight, M. Devlin, K. Kelly, J. Gomez, A.C. Kahler, M.C. White, M.E. Rising, J. O'Donnell, B. Kiedrowski, D.G. Madland

UNCLASSIFIED

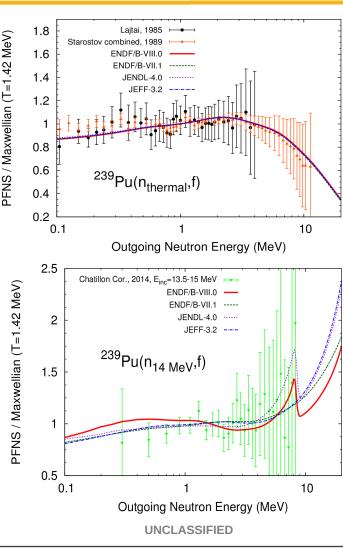
Slide

The ²³⁹Pu PFNS Evaluation of ENDF/B-VIII.0:

- Comparing ENDF/B-VII.1 and ENDF/B-VIII.0 ²³⁹Pu(n,f) PFNS mean values and how they were evaluated.
- Comparing ENDF/B-VII.1 and ENDF/B-VIII.0 ²³⁹Pu(n,f) PFNS covariances and how they were evaluated.
- What should we do better for the next evaluation?

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED


Comparing ²³⁹Pu PFNS evaluated mean values

ENDF/B-VII.1

Evaluated by D.G. Madland for ENDF/B-VII.0

ENDF/B-VII.1 was carried over to maintain good agreement of benchmarks while waiting for new experimental data.

• Los Alamos NATIONAL LABORATORY (51.194)

ENDF/B-VIII.0

Thermal: **VII.1** was slightly hardened to increase criticality benchmark performance

0.5-5 MeV: carried over from VII.1

> 5 MeV: new evaluation by D. Neudecker et al., NDS 148, 293 (2018).

Operated by Los Alamos National Security, LLC for NNSA

Comparing ²³⁹Pu PFNS evaluated mean values

	<u>ENDF/B-VII.1</u>	<u>ENDF/B-VIII.0, E_{inc}>5 MeV</u>
Model	Original LAM as by D.G. Madland, NSE 81, 213 (1982), no pre-equilibrium component	Extended LAM (D. Neudecker et al., NIMA 791, 80 (2015).), exciton model for pre-equilibrium component (DN NDS 148.)
PFNS Exp.	Knitter, Staples et al.	Starostov, Boytsov, Nefedov et al., Knitter, Lestone et al., Lajtai et al., Chatillon et al.
Eval. Technique	LS for E _{inc} < 6 MeV, above grid-search minimization to fit model parameters	GLS
NATIONAL LA	BORATORY UNCLASSIF	IED Slide

Comparing ²³⁹Pu PFNS evaluated covariances

ENDF/B-VII.1

Evaluated by P. Talou et al., NSE 166, 254 (2010). Given for E_{inc} up to 0.5 MeV.

The evaluated data and covariances were obtained independently but evaluated mean values agreed well. ENDF/B-VIII.0

E_{inc} up to 0.5 MeV: carried over from VII.1 and applied up to 5 MeV as physics and consequently covariances are very similar.

E_{inc} > 5 MeV: new evaluation by
 D. Neudecker (NDS 148, NIMA).
 Covariances were evaluated
 with mean values.

UNCLASSIFIED

Slide

Comparing ²³⁹Pu PFNS evaluated covariances

	<u>ENDF/B-VII.1</u>	ENDF/B-VIII.0
Model	Original LAM, unc. for 4 model parameters by PT NSE.	Extended LAM + multiple- chance fission, unc. for ~22 model parameters (DN NDS 148. & NIMA)
PFNS Exp.	Simplified unc. estimate for Knitter, Staples et al., Boytsov et al., Lajtai et al.	Starostov, Boytsov, Nefedov et al., Knitter, Lestone et al., Lajtai et al., Chatillon et al. \rightarrow detailed unc. estimate in D. Neudecker et al., NDS 131, 289 (2016).
Eval. Technique	Kalman filter	GLS
LOS Alamos NATIONAL LABORATORY (51, 194)		IED Slide

What should we do better for the next evaluation?

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

GLS was used for new VIII.0 and the Kalman filter was used for VII.1 covariances.

The generalized least squares algorithm combines model ("M") and experimental mean values ("x") and their associated covariances to evaluated mean values and covariances ("post").

$$\underline{\phi}^{post} = \underline{\phi}^M + \mathbf{Cov}^{post} \mathbf{S}^+ (\mathbf{Cov}^x)^{-1} \left(\underline{\phi}^x - \mathbf{S} \underline{\phi}^M \right),$$

 $\mathbf{Cov}^{post} = \mathbf{Cov}^M - \mathbf{Cov}^M \mathbf{S}^+ \left(\mathbf{SCov}^M \mathbf{S}^+ + \mathbf{Cov}^x \right)^{-1} \mathbf{SCov}^M$

It assumes that:

Experimental data and model values to be normally distributed.

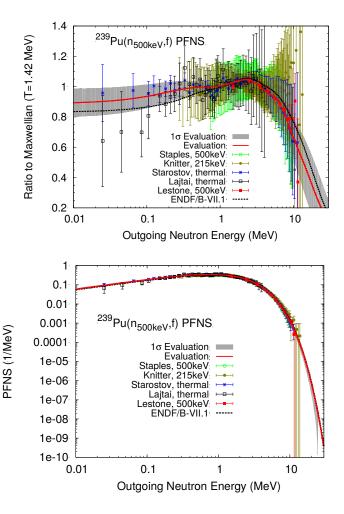
Linear relationship between all observables.

Non-discrepant data.

 \Box Data that is less than ~30% uncertain.

Data that should not cover many orders of magnitude.

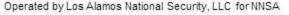
UNCLASSIFIED


Slide 37

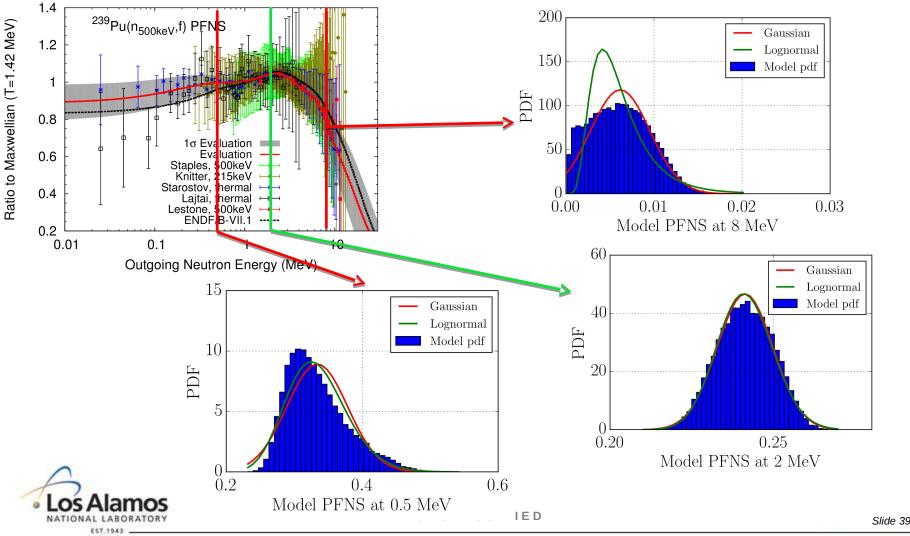
Generalized least squares is not ideal for evaluating PFNS

It requires:

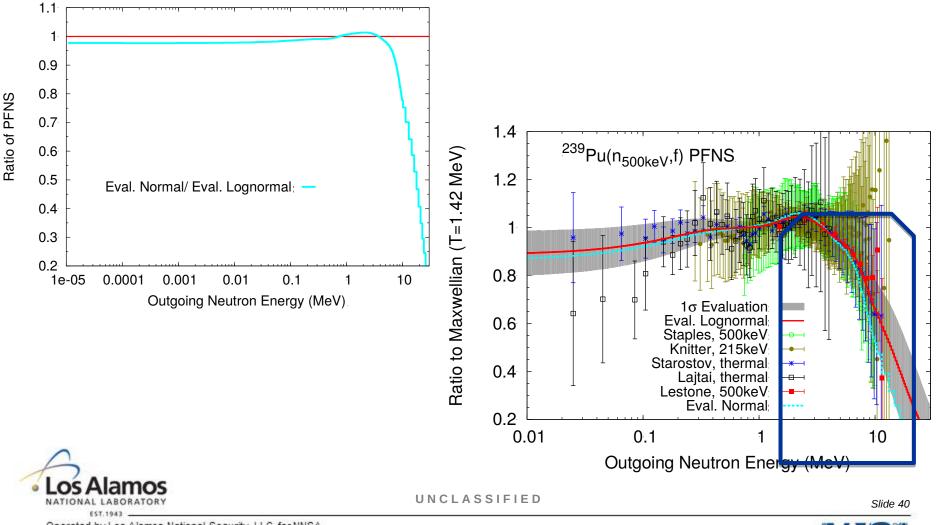
- Linear relationship between VIII.0 yes, all observables.
 VII.1 no
- Non-discrepant data.
- Data that is less than ~30% uncertain.
- Data that should not cover many orders of magnitude.
- Experimental data and model values to be normally distributed.



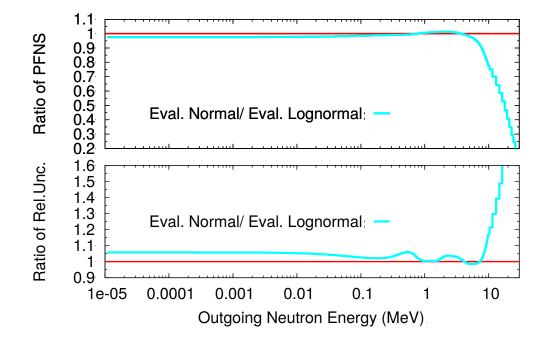
UNCLASSIFIED


0 0

0



Model predicted values are neither normally nor lognormally distributed ...

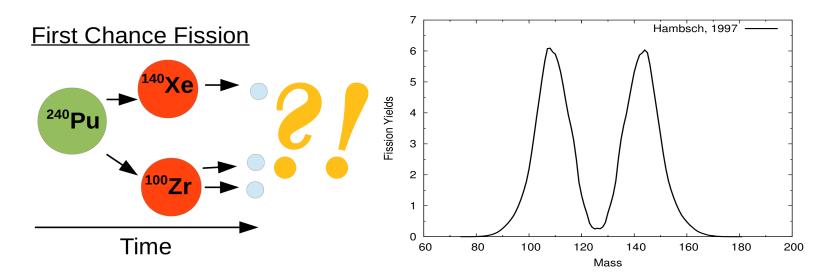


... and evaluating with GLS in PFNS or log space gives different evaluated results ...

Evaluating with GLS in PFNS or log space impacts k_{eff} results distinctly, k_{eff} unc. only little.

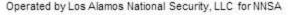
Change in Jezebel k_{eff}: -89 pcm

Increased Jezebel k_{eff} unc. due to PFNS uncertainty: +3.8%

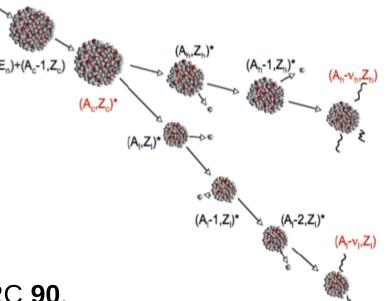


UNCLASSIFIED

Slide 41


Model development: switching to models which describes the fission process in more detail.

Original LAM assumes that neutrons are emitted from one average fission fragment pair and does not take into account the real distribution of fission fragments. This is just one of many approximations.


UNCLASSIFIED

Model development: predicting correlated fission observables based on more physics input.

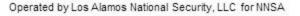
GGMF code (Talou, I. Stetcu, T. Kawano) samples from initial distribution of fission fragments and follows each decay step via Hauser-Feshbach model.

Provide predictions of several fission quantities (PFNS, p(v), PFGS, etc.) and several isotopes \rightarrow MORE (measurable) INPUT QUANTITIES NEEDED.

e.g.: I. Stetcu et al., PRC **90**, 024617 (2014).

UNCLASSIFIED

Slide 43

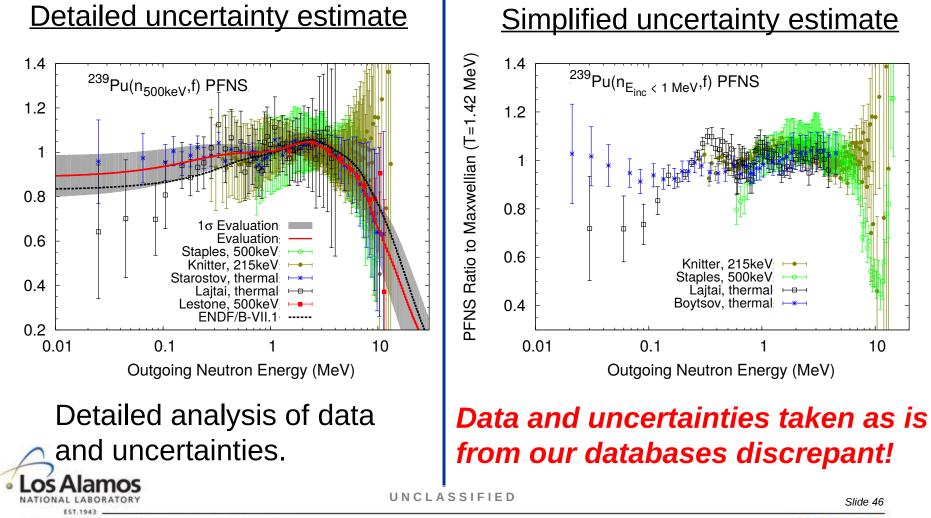


Summary

- ENDF/B-VIII.0 ²³⁹Pu(n,f) PFNS mean values are mostly carried over from VII.1 up to E_{inc} = 5 MeV. Above a new evaluation was adopted including more experimental data sets and extended modeling.
- ENDF/B-VIII.0 ²³⁹Pu(n,f) PFNS covariances were carried over from VII.1 up to E_{inc} = 5 MeV. New files are given above. This covariances are based on a detailed analysis of experimental and mode uncertainties.
- The next evaluation will be likely based on a new physics model. Novel evaluation techniques should be studied.

UNCLASSIFIED

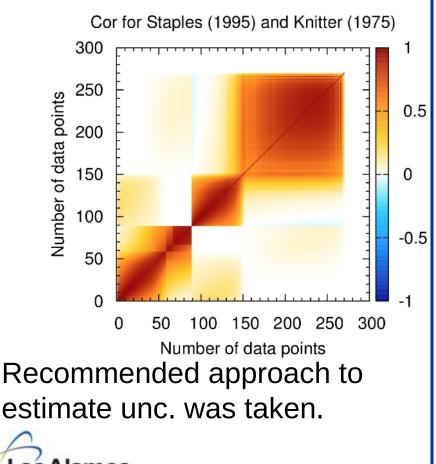
Backup



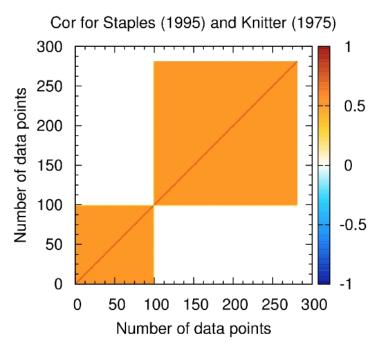
Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Taking data blindly from our databases (which people do!) is not a good idea ...

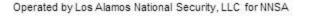

Operated by Los Alamos National Security, LLC for NNSA

Ratio to Maxwellian (T=1.42 MeV)

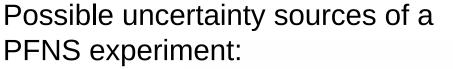

VNS®

Estimating detailed experimental uncertainties is time-intensive because ...

Detailed uncertainty estimate

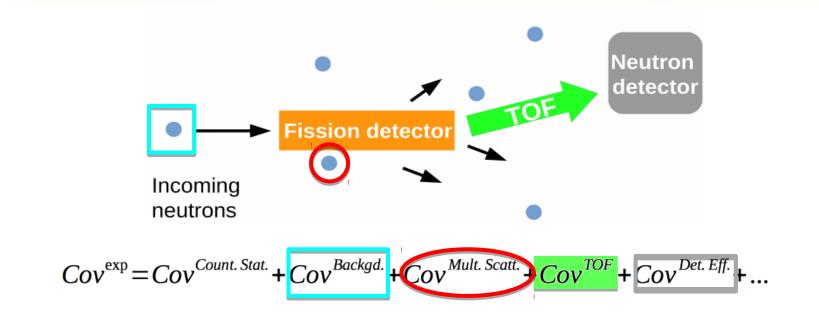


Simplified uncertainty estimate


Total uncertainties extracted from EXFOR and correlations of same exp. are 0.5, otherwise 0.

UNCLASSIFIED

Detailed uncertainty estimate: First estimate covariances of partial uncertainties ...

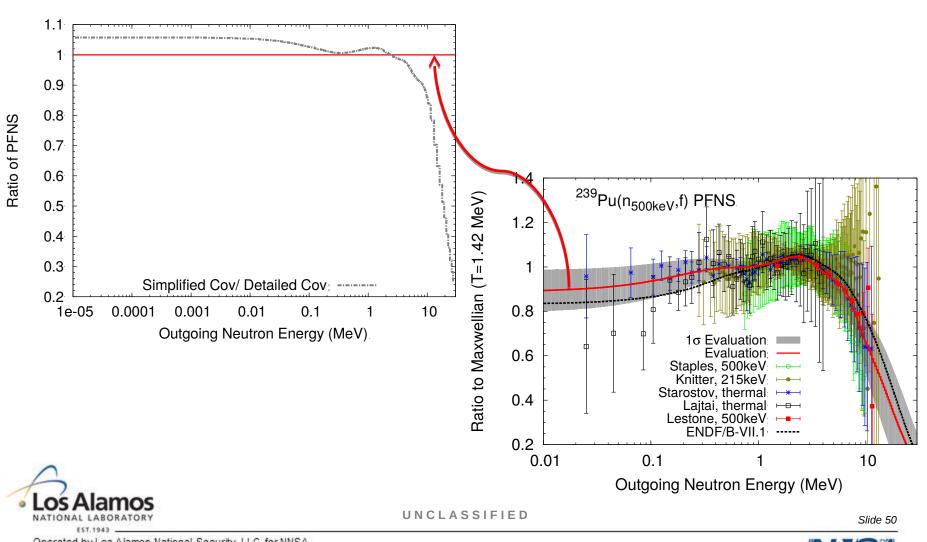


UNCLASSIFIED

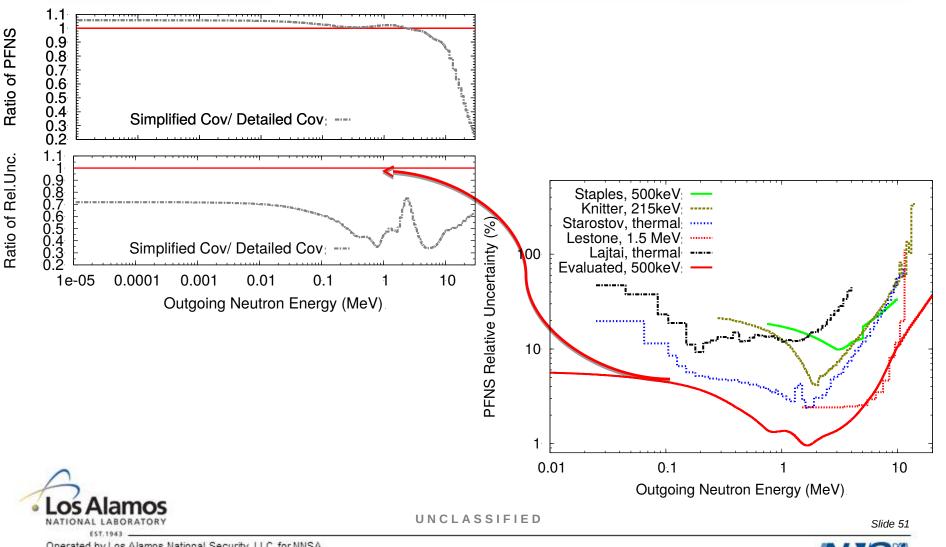
Slide 48

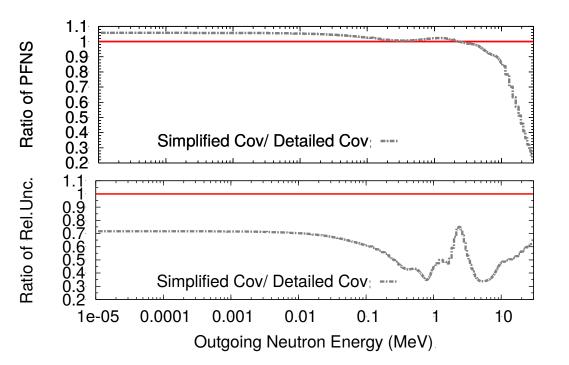
... then add up partial covariances.

Advantages:


- Same technique can be used to estimate covariances between experiments more transparently.
- Additional uncertainties can be easily added.

UNCLASSIFIED


Slide 49


Simplified vs detailed uncertainty estimate leads to distinct change of evaluated PFNS.

Simplified versus detailed uncertainty leads to significantly underestimated evaluated unc.

Simplified versus detailed uncertainty estimate significantly impacts benchmark results.

Change in Jezebel k_{eff}: 195 pcm !!!

Drop in Jezebel k_{eff} unc. due to PFNS uncertainty: -69% !!!

UNCLASSIFIED

Slide 52

