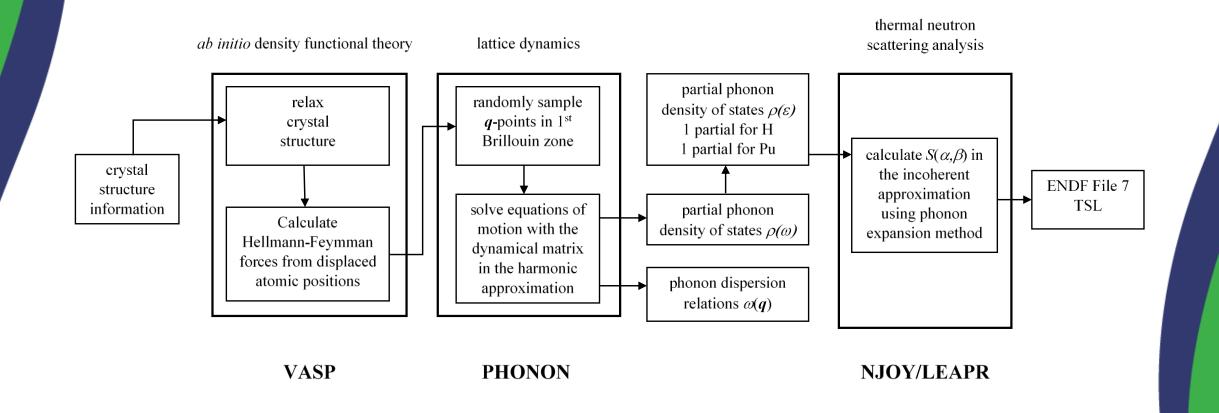
NNL TSL Evaluation Work for ENDF/B-VIII.1

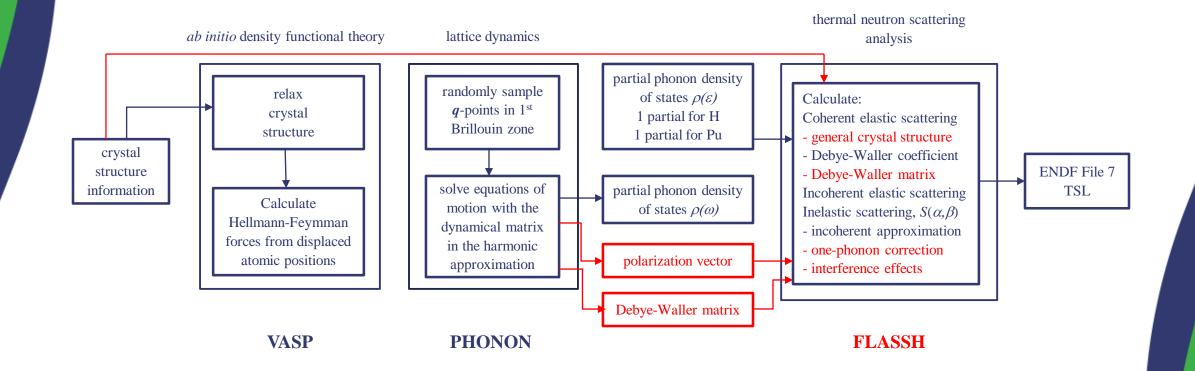
Michael L. Zerkle

Naval Nuclear Laboratory

OECD/NEA WPEC SG42 Paris, France May 15-16, 2018

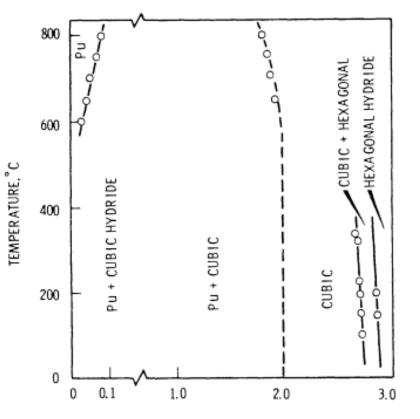


The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Bechtel Marine Propulsion Corporation, a wholly owned subsidiary of Bechtel National, Inc.


Outline

- NNL TSL Evaluation Process
 - Current
 - New
- NNL Evaluations in Progress
 - H-PuH₂ (2017 NCSD Topical Meeting)
 - H-UH₃ (2018 ANS Annual Meeting)
- Summary

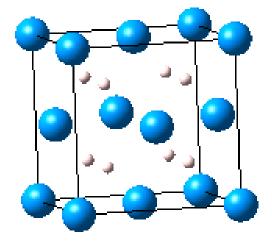
Current TSL Evaluation Process (Crystalline Moderators)



New TSL Evaluation Process (Crystalline Moderators)

Plutonium-Hydrogen Phase Diagram

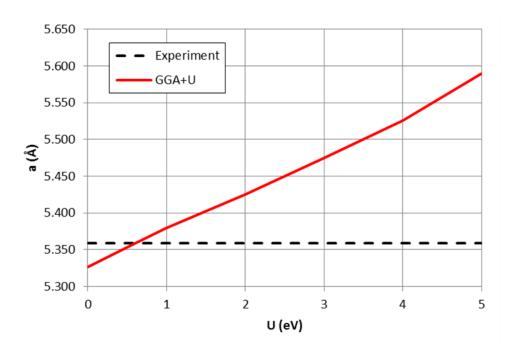
- H₂ (gas) reacts with Pu (metal) to form plutonium hydrides (PuH_x)
- Three PuH_x phases present
 - PuH_2 (FCC) for H/Pu ≤ 2.0
 - Two phase solid solution of Pu (metal) + PuH₂ (FCC)
 - PuH_{2+x} (FCC) for 2.0 < H/Pu < 3
 - Single phase solid solution for 2.0 < H/Pu < 2.75
 - Two phase solid solution, $\text{PuH}_{2\text{+}x}$ (FCC) + PuH_3 (Hex) for 2.75 < H/Pu < 3- ϵ
 - PuH_3 (Hex) for 2.75 < H/Pu ≤ 3.0
 - Single phase solid solution for $3-\epsilon < H/Pu < 3.0$
- This work concentrates on PuH₂
 - PuH_{2+x} and PuH₃ to be evaluated later



HYDROGEN / PLUTONIUM ATOMIC RATIO

Phase diagram for the plutonium-hydrogen system. From R. N. R. Mulford and G. E. Sturdy, *J. Am. Chem. Soc.*, **78**, 3899 (1956).

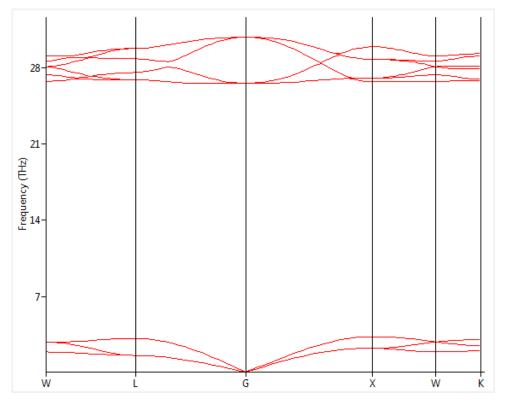
PuH₂ Structure


- PuH₂ has a CaF₂ type FCC structure
 - 12 atoms per unit cell
 - 4 Pu atoms (blue) at vertices and faces of unit cell
 - 8 H atoms (grey) in tetrahedral holes between Pu atoms
 - Mass density of 10.40 g/cm³
- Measured lattice parameter (X-ray diffraction)
 - *a* = 5.359 ± 0.002 Å, Mulford and Sturdy (1955)
 - *a* = 5.359 ± 0.001 Å, Coffinberry and Ellinger (1956)
 - *a* = 5.359 ± 0.002 Å, Muromura et al. (1972)
 - *a* = 5.3593 Å, Willis et al. (1985)
- H-PuH₂ TSL developed using first-principles approach
 - Density Functional Theory (DFT) to calculate interatomic Hellman-Feynman forces for crystal structure
 - Lattice Dynamics (LD) to determine dispersion relations and phonon density of states (DOS)
 - H-PuH₂ TSL evaluated in incoherent approximation using NJOY/LEAPR

PuH₂ Unit Cell

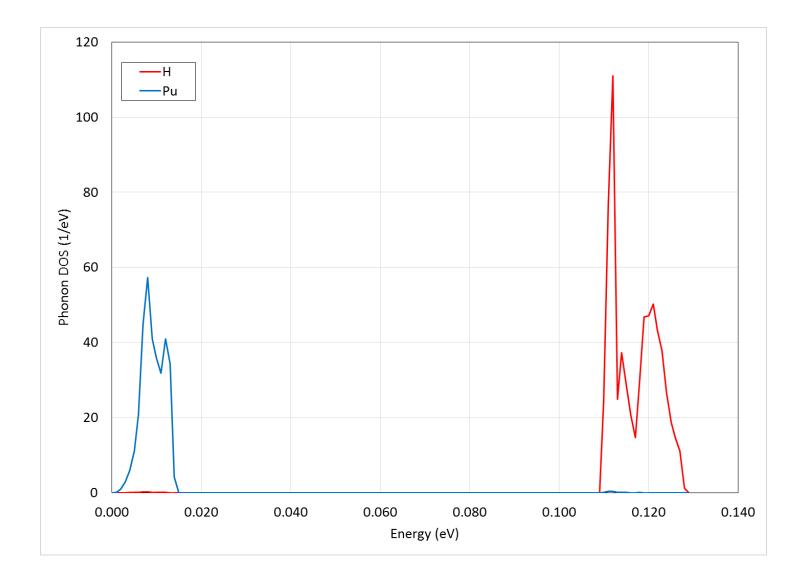
PuH₂ Structure Optimization

- DFT structure optimization using VASP (Vienna Ab-Initio Simulation Package)
 - GGA exchange and correlation functional
 - Hubbard U parameter correction applied to Pu 5f electrons
 - Account for effect of strong correlation of 5f electrons on chemical binding of U and Pu molecules
 - Spin-polarized magnetism
 - 500 eV planewave cutoff
 - *k*-point spacing of 0.2 Å⁻¹ (11×11×11 k-mesh)
 - 10⁻⁶ eV total electronic energy threshold
- Hubbard U = 0.6 eV reproduces the measured lattice parameter of a = 5.359 Å

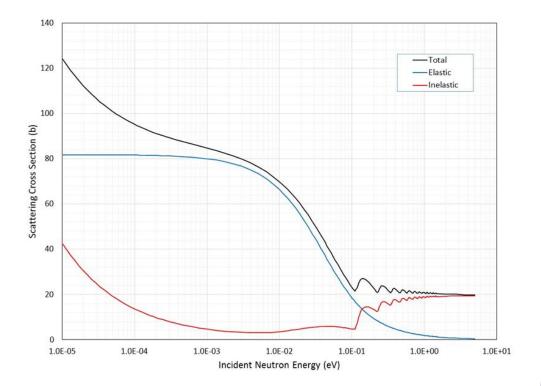


VASP structure optimization of PuH₂ using GGA+U.

PuH₂ Lattice Dynamics

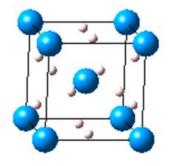

LD calculations performed using PHONON

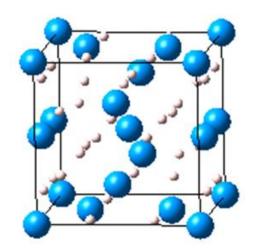
- Interatomic forces calculated by VASP
- 2×2×2 supercell (96 atoms)
- ±0.02 Å atom displacements
- 0.02 Å⁻¹ k-point spacing (3×3×3 k-point mesh)
- Dispersion relations (at right)
 - Well separated acoustic and optical modes
 - Lower branches are acoustic modes mainly due to heavy Pu atom vibrations
 - Higher branches are optical modes mainly due to light H atom vibrations
- Phonon DOS (next slide)
- No published INS measurements are available to verify calculated dispersion relations & phonon DOS


Calculated dispersion relation for PuH₂ along the highest-symmetry points of the Brillouin zone.

Calculated Phonon DOS for PuH₂

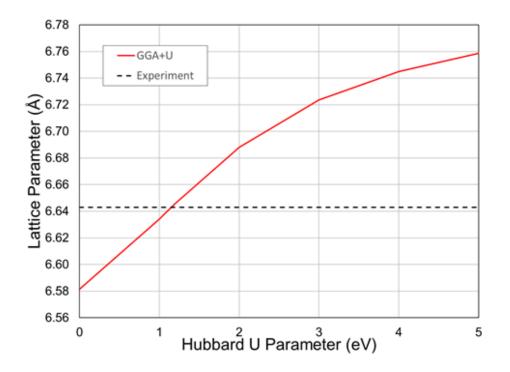
H-PuH₂ TSL Evaluation


- H-PuH₂ TSL generated using NJOY/LEAPR
 - H-PuH₂ phonon DOS from PHONON calculation
 - Incoherent approximation
 - Atomic mass ratio and free atom scattering cross section for ¹H from ENDF/B-VII.1
 - α and β grids optimized to treat scattering up to 5 eV without SCT approximation
 - Temperature evaluated at 293.6 K (room temp.)
- Pu-PuH₂ TSL not evaluated at this time
 - LEAPR can't properly treat Pu coherent elastic scattering in PuH₂ without extensive modifications
 - Deferring evaluation of Pu-PuH₂ until new beta version of FLASSH code is available
 - Proper treatment of coherent elastic scattering and relax incoherent approximation
 - Eventually account for nuclear excitations
- Use free gas approximation for Pu (interim)
 - Small approximation for PuH₂ since H scattering dominates


Total, elastic, and inelastic scattering cross section for $H-PuH_2$ at 293.6 K generated by NDEX

UH₃ Structure

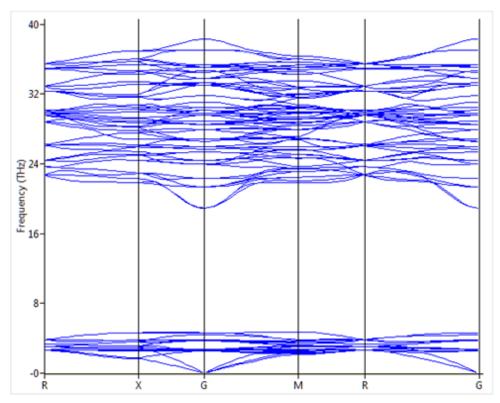
- UH₃ has two allotropes, both cubic
 - Pm3n symmetry group
- α -UH₃ metastable, only found at low (cryogenic) temps
 - 2 molecules (8 atoms) per unit cell
 - 4.16 Å lattice constant
- β -UH₃ stable at room temperature and above
 - 8 molecules (32 atoms) per unit cell
 - 6.643 Å lattice constant
- H-UH₃ TSL developed using first-principles approach
 - Density Functional Theory (DFT) to calculate interatomic Hellman-Feynman forces for crystal structure
 - Lattice Dynamics (LD) to determine dispersion relations and phonon density of states (DOS)
 - H-UH₃ TSL evaluated in incoherent approximation using NJOY/LEAPR


 α -UH₃ Unit Cell

 β -UH₃ Unit Cell

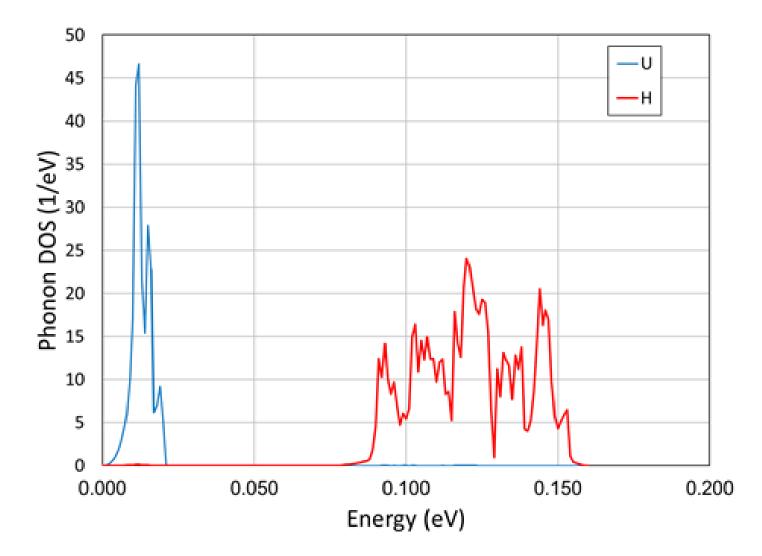
UH₃ Structure Optimization

- DFT structure optimization using VASP (Vienna Ab-Initio Simulation Package)
 - GGA exchange and correlation functional
 - Hubbard U parameter correction applied to U 5f electrons
 - Account for effect of strong correlation of 5f electrons on chemical binding of U and Pu molecules
 - Spin-polarized magnetism
 - 500 eV planewave cutoff
 - k-point spacing of 0.2 Å⁻¹ (5×5×5 k-mesh)
 - 10⁻⁶ eV total electronic energy threshold
- Hubbard U = 1.2 eV yields lattice parameter of a = 6.6458 Å
 - 0.04% higher than measured lattice parameter of a = 6.643 Å

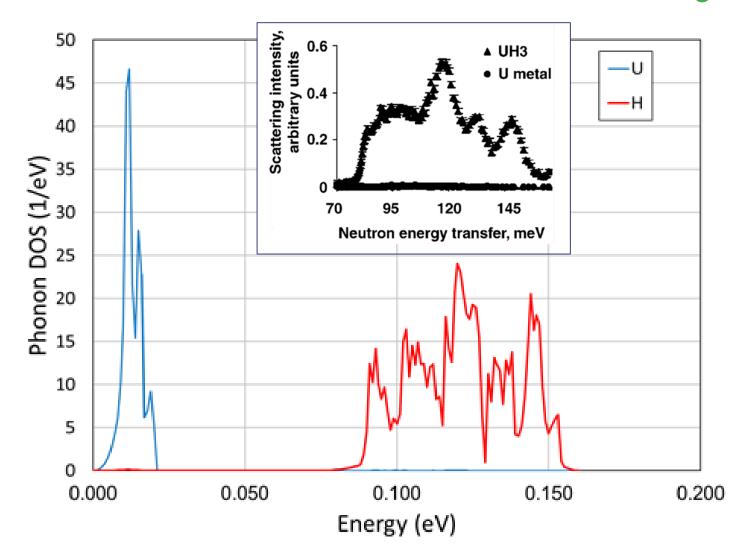


VASP structure optimization of UH_3 using GGA+U.

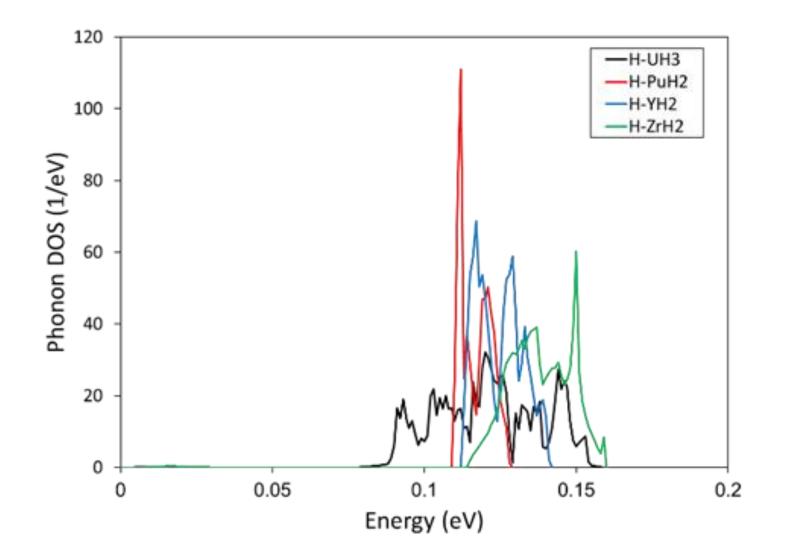
UH₃ Lattice Dynamics


LD calculations performed using PHONON

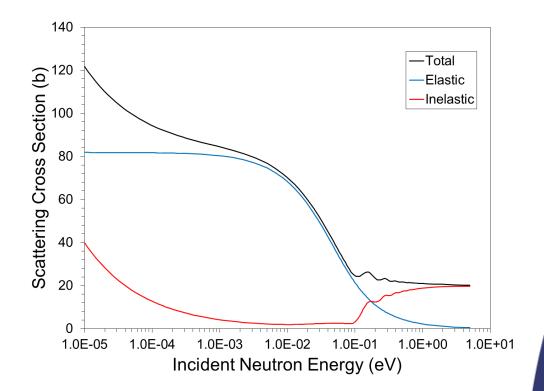
- Interatomic forces calculated by VASP
- 2×2×2 supercell (256 atoms)
- ±0.02 Å atom displacements
- 0.02 Å⁻¹ k-point spacing (3×3×3 k-point mesh)
- Dispersion relations (at right)
 - Well separated acoustic and optical modes
 - Lower branches are acoustic modes mainly due to heavy U atom vibrations
 - Higher branches are optical modes mainly due to light H atom vibrations
 - Relatively wide and dense optical mode
- Phonon DOS (next slide)
- UH₃ optical peak measured by Glogolenko et al. consistent with calculated phonon DOS



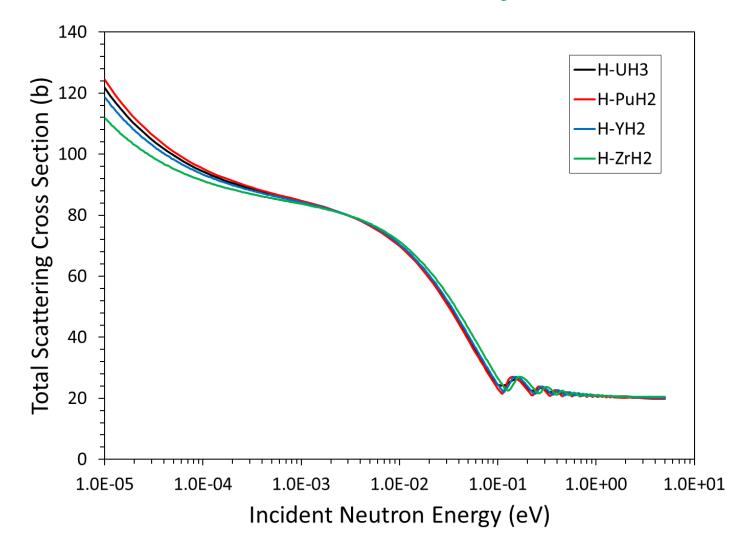
Calculated dispersion relation for UH₃ along the highest-symmetry points of the Brillouin zone.


Calculated Phonon DOS for UH₃

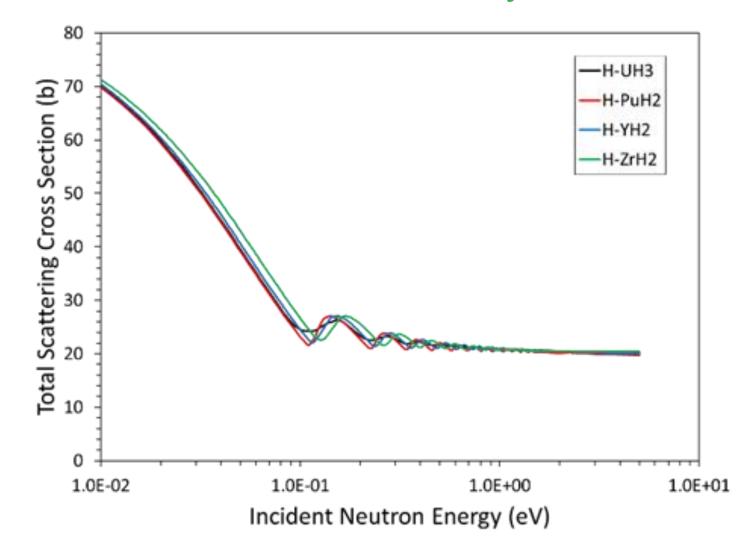
Calculated Phonon DOS for UH₃



Comparision of H Phonon DOS for Several Metal Hydrides


H-UH₃ TSL Evaluation

- H-UH₃ TSL generated using NJOY/LEAPR
 - H-UH₃ phonon DOS from PHONON calculation
 - Incoherent approximation
 - Atomic mass ratio and free atom scattering cross section for ¹H from ENDF/B-VII.1
 - α and β grids optimized to treat scattering up to 5 eV without SCT approximation
 - Temperature evaluated at 293.6 K (room temp.)
- U-UH₃ TSL not evaluated at this time
 - LEAPR can't properly treat U coherent elastic scattering in UH₃ without extensive modifications
 - Plan to evaluate U-UH₃ using FLASSH
 - Proper treatment of coherent elastic scattering and relax incoherent approximation



Total, elastic, and inelastic scattering cross section for $H-UH_3$ at 293.6 K generated by NDEX

Comparision of Total Scattering Cross Sections for Several Metal Hydrides

Comparision of Total Scattering Cross Sections for Several Metal Hydrides

Summary

- NNL transitioning from NJOY/LEAPR to FLASSH based TSL evaluation methodology to leverage improved physics
- TSL Evaluations in progress for ENDF/B-VIII.1
 - H-PuH₂
 - H-UH₃
- Additional TSL evaluations being considered for ENDF/B-VIII.1
 - Y-YH₂ (improve elastic scattering treatment)
 - U-UH₃
 - H-PuH_{2+x}
 - Pu-PuH₂ (maybe)
 - Pu-PuH_{2+x} (maybe)