DE LA RECHERCHE À L'INDUSTRIE

TSL ACTIVITIES IN THE FRAME OF THE NAUSICAA COLLABORATION

G. Noguere, J.P. Scotta, C. De Saint Jean, A. Filhol, J. Ollivier, E. Farhi, Y. Calzavarra, V. Jaiswal, L. Leal, J.I. Marquez Damian, P. Maldonado

www.cea.fr

16 May 2018, NEA, Paris

Context

New TSL evaluations of H2O and UO2 (ENDF\B-VIII)

\$Rev:: \$ \$Date:: #\$			
	6		
	8		
H(H2O) ARCAB EVAL-JUN17 Marquez Damian	2		
THERMAL NEUTRON SCATTERING DATA			
ENDF-6 FORMAT			
******	**		
*	\$Rev:: \$ \$Date:: \$	1 0 0	0
* 323.6, 350.0, 373.6, 400.0,	1.480000+2 2.360058+2 -1 0 0 1	48 1451	1
* 423.6, 450.0, 473.6, 500.0,	0.000000+0 0.000000+0 0 0 0 0 6	48 1451	2
* 523.6, 550.0, 573.6, 600.0 K, 623.6 K	1.000000+0 5.000000+0 0 0 12 8	48 1451	3
* Extrapolated temperatures = 650.0, 800.0 K		48 1451	4
* * This seclostics is based on the CAR Model for light sets [1]	U(UOZ) LEIP LAB EVAL-OCTI6 J.L. Wormaid, Y. Zhu, A.I. Hawari	48 1451 49 1451	5
* in a liquid state, T < T-crit(H2O) = 647.1 K. Two extrapolated	ENDF/B-VIII.beta3 MATERIAL 48	48 1451	7
* temperature points at 650 K and 800 K were added for backwards	THERMAL NEUTRON SCATTERING DATA	48 1451	8
* compatibility with ENDF/B-VII.1 scripts. The file (MF/) was	ENDF-6 FORMAT	48 1451	9
*	Temperatures = 296 400 500 600 700 800 1000 1200 K	48 1451	10
* The CAB model is a further improvement of ENDF/B-VII (2006)	Paralamentaria	48 1451	11
* inelastic approximation for n + H-in-H2O & vibrational	Background	48 1451 48 1451	12
* spectrum decomposition). The continuous spectrum[2] is based	This library was produced by the Low Energy Interaction Physics	48 1451	14
* on MD GROMACS Calculations[2] and diffusion coefficients * measured by Voshida[3] and Mills[4]	(LEIP) group at NC State University. The inelastic scattering	48 1451	15
*	thermal scattering law data for UO2 were developed using	48 1451	16
* For oxygen in H2O, free gas approximation is acceptable.	ab-initio lattice dynamics methods [1,2]. The LEAPR module	48 1451	17
* The evaluation was prepared by:	from the NJOY code system was used to produce File 7 MT=2 and 4	48 1451	18
	made to calculate the coherent elastic cross-section for HO2 [3].	48 1451 48 1451	20
* J.I. Marquez Damian, F. Cantargi, and J.K. Granada * Nuclear Data Group - Neutron Physics Department	Per convention. MAT=48 and ZA=148 are used for U in UO2.	48 1451	21
* Centro Atomico Bariloche - Argentina (CAB):		48 1451	22
* and	References	48 1451	23
*		48 1451	24
* D. Roubtsov	1. A.I. Hawari, et al "Ab Initio Generation of Thermal Neutron	48 1451	25
* Canadian Nuclear Laboratories (CNL) * Chalk River, Canada	Physics of Fuel Cycles and Idvanced Nuclear Systems	48 1451	20
*	Global Developments (2004).	48 1451	28
* References: * [1] App Nucl Energy 65 280 (2014)	2. J.L. Wormald, A.I. Hawari "Ab Initio Generation of Thermal	48 1451	29
<pre>* [1] Ann. Mucl. Energy, 03, 200 (2014) * http://dx.doi.org/10.1016/j.anucene.2013.11.014</pre>	Scattering Law for Uranium Dioxide," Transactions of the	48 1451	30
* [2] J. Chem. Phys. 139, 024504 (2013)	American Nuclear Society, v 115 (2016)	48 1451	31
^ http://dx.doi.org/10.1063/1.4812828 * [3] J Chem Phys 123 164506 (2005)	3. Y. Zhu, A.I. Hawari, "Implementation of a Generalized Coherent	48 1451	32
* http://dx.doi.org/10.1063/1.2056542	Analysis " Proceedings of ICNC 2015, 35th International	48 1451	30
* [4] J. Phys. Chem. 77, 685 (1973)	Conference on Nuclear Criticality Safety (2015)	48 1451	35
* nccp://dx.doi.org/10.1021/j1000248025	1 451 38 0	48 1451	36
***************************************	7 2 1305 0	48 1451	37
	7 4 46810 0	48 1451	38

Microscopic and integral data base

Double-differential neutron cross sections and DOS : new experimental program

- \Rightarrow Light and heavy water : IN4, IN5 and IN6 at ILL from cold to hot operating conditions
- H20: 285 K to 540 K (P = 1- 600 bar)
- \Rightarrow UO2 : IN4 and IN6 from room temperature to Hot Full Power conditions
- T = 294 K to 900 K

Total cross sections: from the EXFOR data base

- ⇒ Analysis of transmission measurements performed on UO2 samples at the time-of-flight facility GELINA of JRC-Geel
- T = 23 K and 294 K

Integral validation with CEA benchmarks

- \Rightarrow Analysis of the MISTRAL programs carried out in the EOLE reactor of CEA Cadarache
- T = 280 K to 354 K

CAB model for light and heavy water

Annals of Nuclear Energy 65 (2014) 280-289

CAB models for water: A new evaluation of the thermal neutron scattering laws for light and heavy water in ENDF-6 format

J.I. Márquez Damián^{a,*}, J.R. Granada^a, D.C. Malaspina^b

^a Neutron Physics Department and Instituto Balseiro, Centro Atómico Bariloche, CNEA, Argentina

^b Department of Biomedical Engineering and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States

DE LA RECHERCHE À L'INDUSTR

INSTITUTE LAUE-LANGEVIN

Double-differential neutron cross section H2O

Incident neutron energy $E_0 = 14 \text{ meV}$, $\theta = 15^{\circ}$ and T = 300 K.

Double-differential neutron cross section H2O

Source of such discrepancies between the CAB model and the data

 \Rightarrow non-classical behavior in the diffusion of the water molecules ?

 \Rightarrow molecules could diffuse in a step-like movement.

LEAPR module deficiency?

To compensate the deficiencies of the diffusion model, Abe et al. (ANE 83, 302, 2015) applied a **quantum correction** to the scattering function. Similar work was done by J.I. Márquez Damián (ANE 92, 107, 2016)

The nature of the discrepancies between the calculation and the ILL data seems to be the same.

Two-step CONRAD calculation for producing Model Parameter Covariance Matrix for GROMACS (CAB model)

 \Rightarrow Good agreement with the EXFOR data

DE LA RECHERCHE À L'INDUSTRI

Experimental validation with integral benchmarks H2O

EOLE reactor (CEA Cadarache, France)

When the CAB model is used in the JEFF-3.1.1 library, the slope as a function of the temperature vanishes

NCSU model for UO2

\$Rev:: \$ \$Date:: \$	100
1.480000+2 2.360058+2 -1 0 0 1	48 1451
0.000000+0 0.000000+0 0 0 0 6	48 1451
1.000000+0 5.000000+0 0 0 12 8	48 1451
0.000000+0 0.000000+0 0 0 31 3	48 1451
U(UO2) LEIP LAB EVAL-OCT16 J.L. Wormald, Y. Zhu, A.I. Hawari	48 1451
DIST-	48 1451
ENDF/B-VIII.beta3 MATERIAL 48	48 1451
THERMAL NEUTRON SCATTERING DATA	48 1451
ENDF-6 FORMAT	48 1451
Temperatures = 296 400 500 600 700 800 1000 1200 K	48 1451
•	48 1451
Background	48 1451
	48 1451
This library was produced by the Low Energy Interaction Physics	48 1451
(LEIP) group at NC State University. The inelastic scattering	48 1451
thermal scattering law data for UO2 were developed using	48 1451
ab-initio lattice dynamics methods [1,2]. The LEAPR module	48 1451
from the NJOY code system was used to produce File 7 MT=2 and 4	48 1451
for U in UO2 and O in UO2. Modifications to the LEAPR module were	48 1451
made to calculate the coherent elastic cross-section for UO2 [3].	48 1451
Per convention, MAT=48 and ZA=148 are used for U in UO2.	48 1451
	48 1451
References	48 1451
	48 1451
1. A.I. Hawari, et al "Ab Initio Generation of Thermal Neutron	48 1451
Scattering Cross Sections," Proceedings of PHYSOR 2004: The	48 1451
Physics of Fuel Cycles and Advanced Nuclear Systems	48 1451
Global Developments (2004).	48 1451
2. J.L. Wormald, A.I. Hawari "Ab Initio Generation of Thermal	48 1451
Scattering Law for Uranium Dioxide," Transactions of the	48 1451
American Nuclear Society, v 115 (2016)	48 1451
3. Y. Zhu, A.I. Hawari, "Implementation of a Generalized Coherent	48 1451
Elastic Scattering Formulation for Thermal Neutron Scattering	48 1451
Analysis," Proceedings of ICNC 2015: 35th International	48 1451
Conference on Nuclear Criticality Safety (2015)	48 1451
1 451 38 0	48 1451
7 2 1305 0	48 1451
7 4 46810 0	48 1451

Experimental phonon spectrum extracted from ILL data T=300 K

Difficult to achive a meaningfull experimental validation of the phonon spectrum

Experimental phonon spectrum extracted from ILL data T=300 K

CEA | 10 AVRIL 2012 | PAGE 13

Experimental phonon spectrum extracted from ILL data T=300 K

account in the TRIPOLI4 simulations

The use of the cumulative distribution of $S_{sym}(q,\omega)$ allows to get an experimental phonon spectrum in reasonable agreement with data from J. Pang (Phys. Rev. B89, 115132, 2014)

Doppler broadening of neutron-induced resonances using LEAPR formalism

Eur. Phys. J. Plus (2018) 133: 177

DOI 10.1140/epjp/i2018-12009-y	PHYSICAL JOURNAL PLUS
Regular Article	
Doppler broadening of neutro initio phonon spectrum*	on-induced resonances using ab
G. Noguere ^{1,a} , P. Maldonado ² , and C. De Saint Jean ¹ Laboratory of Physical Studies, CFA (DEN Cadaracha	n ¹
² Department of Physical Studies, ODA/DIA Gadalache ² Department of Physics and Astronomy, Uppsala Univer-	e, F-13108 Saint Paul Les Durance, France rrsity, Box 516, S-75120 Uppsala, Sweden

Abstract. Neutron resonances observed in neutron cross section data can only be compared with their theoretical analogues after a correct broadening of the resonance widths. This broadening is usually carried out by two different theoretical models, namely the Free Gas Model and the Crystal Lattice Model, which, however, are only applicable under certain assumptions. Here, we use neutron transmission experiments on UO₂ samples at T = 23.7 K and T = 293.7 K, to investigate the limitations of these models when an *ab initio* phonon spectrum is introduced in the calculations. Comparisons of the experimental and theoretical transmissions highlight the underestimation of the energy transferred at low temperature and its impact on the accurate determination of the radiation widths $T_{\gamma\lambda}$ of the ²²⁸U resonances λ . The observed deficiency of the model represents an experimental evidence that the Debye-Waller factor is not correctly calculated at low temperature near the Neel temperature $(T_N = 30.8$ K).

THE EUROPEAN

we use recent spectra calculated at 23 K and 300 K by Pablo Maldonado

DE LA RECHERCHE À L'INDUSTR

Total cross section UO2

Measurements were performed by Meister et al. (1997) at the GELINA facility (JRC-Geel, Belgique) with the Time Of Flight technique at L=30 m

Ces

Total cross section UO2

At room temperature, LEAPR formalism provides an excellent agreement with the data

Total cross section UO2

At T=23.7 K, model not adapted to account for the strong coupling between the lattice vibrations and the magnetic properties of UO2 (+Jahn-Teller distortion of the oxygen cage)

Conclusions

Double-differential neutron cross sections

- Provide qualitative information
- Difficult to explain the differences between the data and the simulation
- Inter-comparaison exercises between facilities are needed

Neutron total cross section

- Provide quantitative « integrated » information in the thermal and resonance ranges
- Needs for transmission data at high temperature !
- Needs for data below 1 meV
- Difficult to get beam time on the existing cold neutron sources to do « simple » transmission measurements

Integral benchmarks (keff)

- Provide global trends on TSL
- Sensitivity studies are needed to investigate « compensation » effects