Joint Meeting of CIELO and WPEC Subgroup 39 on Methods and approaches to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data files

> May 14, 2014 NEA Headquarters, Issy-les-Moulineaux, France

Revised Recommendations from ADJ2010 Adjustment

Kenji YOKOYAMA and Makoto ISHIKAWA

Japan Atomic Energy Agency (JAEA)

Introduction

ADJ2010 is a 70-group adjusted library based on JENDL-4.0, where 488 integral experimental data from 8 facilities (ZPPR, ZEBRA, JOYO, MONJU, BFS, MASURCA, SEFOR and Los Alamos) were used for the adjustment.

Here, the major alteration of nuclear data by the adjustment is summarized for 5 nuclides (Pu-239, U-238, U-235, Fe-56 and Na-23), and compared with ENDF/B-VII.1 and JEFF-3.1.2.

Finally, we try to make some recommendations to nucleardata evaluators, though it is not mature.

A thick report of ADJ2010 is available from the URL below with the huge numerical results in digital files.

http://jolissrch-inter.tokai-sc.jaea.go.jp/search/servlet/search?5035118&language=1 2

Pu-239

- ADJ2010 increases Pu-239 capture cross-section over 3keV by 7 to 9%. This large alteration is at the variance bound of JENDL-4, but agrees with NEITHER of the three major libraries. The increase is determined by a combination of integral experiments. -> next slides.
- Present measured data are quite old before 1976. New DANCE data will be published soon.

Small Test Cases to Investigate Mechanisms

Integral Experiments Used in Small Test Cases

		JEZEBEL		
	keff	C28/F49	F28/F49	keff
Case 1-1	Х			
Case 1-2		Х		
Case 1-3			Х	
Case 2-1	Х	Х		
Case 3-1	Χ	Χ	Χ	
Case 4-1	Х	Х	Х	Х

It is heuristically found that Case 3-1 reproduces well the cross-section alteration of Pu-239 capture of ADJ2010

In spite of using only 3 data, compared with 488 data of ADJ2010

Cross-section Alteration of Pu-239 capture

Not moved by using only ZPPR-9 keff (*motive force* = +2.45)
 Begin to move by a combination of integral experiments

Summary of "Conflict" and "Freely Adjustable"

Case	1-1	1-2	1-3	2-1	3-1	4-1
Integral experiments used for adjustment	Z9-keff	C28/F49	F28/F49	Z9-keff C28/F49	Z9-keff C28/F49 F28/F49	Z9-keff C28/F49 F28/F49 JZ-keff
Pu-239 capture	F	F	F	F	F	С
Pu-238 fission	F	F	F	С	С	С
Pu-239 χ	F	F	F	С	С	С
Pu-239 (n, n)	-	-	-	-	-	F
U-238 capture	F	F	F	С	С	С
U-238 fission	F	F	F	F	С	С
U-238 (n, n')	F	F	F	С	С	С

- Case 2-1: Pu-239 capture begins to move
- Case 3-1: Pu-239 capture moves more
- Case 4-1: Conflict but Pu-239 (n, n) begins to move

- ADJ2010 decreases Pu-239 fission cross-section by approximately 0.5%.
- ENDF and JEFF seem to be consistent with JENDL-4.0 or ADJ2010 in average, but there are large fluctuations exceeding the variance. It may be better to consult nuclear data people about the reason.

ADJ2010 increases Pu-239 elastic-scattering cross-section by 2% at the maximum. This alteration is within the variance of JENDL-4.

- ADJ2010 hardened Pu-239 fission spectrum by 4% at the maximum.
- This large alteration is within the variance of JENDL-4, but agrees with NEITHER of the three major libraries.
- Current covariance fixes the peak value of spectrum at 2MeV.

- ADJ2010 increases Pu-239 inelastic scattering cross-section by 10% at the maximum. This alteration is within the variance of JENDL-4.
- Increase of inelastic scattering compensates the effect of the Pu-239 fission spectrum hardening on Na void reactivity, but the mechanism of increase is NOT known.

- ADJ2010 decreases prompt neutron number from Pu-239 fission by 0.2%. This small decrease is consistent with the 0.2%dk overestimation of JENDL-4 for large Pu-fueled cores.
- The difference between JENDL-4.0 and ENDF/JEFF shows strange wave-shape.

U-238

ADJ2010 changes U-238 capture cross-section between +2 and -2%. This small alteration is within the variance of JENDL-4, and agrees with the three major libraries.

- ADJ2010 slightly decreases Pu-239 inelastic-scattering cross-section between 0 and 5% over 1MeV. This alteration is within the variance of JENDL-4.
- This decrease of inelastic-scattering is the opposite direction to correct the overestimation of Na void reactivity for Pu-fueled cores with JENDL-4.0.

- ADJ2010 decreases U-238 mu-ave. by 8% at maximum. The effect of this alteration to adjusted C/Es are NOT clear.
- The evaluation of mu-ave. does NOT seem converged at all. Expect to be improved by SG35.

U-235

ADJ2010 slightly changed U-235 capture cross-section only around 1 keV. This little alteration is consistent with CIELO evaluation, which is similar with JENDL-4.0.

No comments for ADJ2010.

Even this major cross-section has quite large difference among libraries in high energy region, since it is not related to thermal reactors, maybe.

19

Fe-56

■ No comments for ADJ2010.

Three libraries are rather similar, but re-evaluation is underway in CIELO, using new measured data.

Na-23

- ADJ2010 increases Na-23 elastic-scattering cross-section between 2 and 8%. This alteration is within the variance of JENDL-4.
- ENDF largely differs from JENDL and JEFF, since it is newer evaluation. The covariance of JENDL and COMMARA is consistent with this fact. -> next slide. 23

SG33 Final Report Chap.3 Covariance (Feb.20, 2013)

Figure 3.2 Comparison of JENDL-4.0 and COMMARA-2.0 Covariance (2/3) - Na-23 Elastic -

2) Na-23 elastic scattering data around 2 keV

 3 This energy independency of 2 keV peak in the C-2.0 covariance is not well imagined from the general least-square analysis. There might have been some special treatments for the covariance evaluation in this resonance peak.

At this energy, there appears a giant resonance peak which affects significantly the sodium-voiding reactivity in sodium-cooled fast reactor cores. As found in Fig.3.2, the shape of Standard deviation (STD) is extremely different between two libraries, that is, the minimum STD value occurs at the cross-section peak energy in C-2.0, on the contrary, the maximum appears there in J-4.0. With a simple consideration, the trend of C-2.0 seems more natural, since the larger cross-sections would be more accurate due to the small statistical error in the measurement. The correlations are also quite different. In the C-2.0 covariance, the 2 keV peak has no correlations with other energy³, while J-4.0 is partially positive everywhere above 100 eV. The covariance of C-2.0 is evaluated by the EMPIRE/KALMAN combination, where the prior resonance model parameter uncertainties are derived from Mughabghab (Ref.15), on the other hand, J-4.0 applies the GMA code with some corrections to meet the measured cross-sections with the evaluated ones of J-4.0 which is based on the multi-level Breit-Wigner formula with rather old resonance parameter values recommended by BNL in The cross-section difference between ENDF/B-VII.0 and J-4.0 is -17~+4% around 2keV. 1981. therefore, the difference of STDs might be reasonable if we take into account the corrections given to J-4.0 covariance.

ADJ2010 largely decreases Na-23 inelastic-scattering cross-section between 5 and 20% over 1MeV. This alteration is at the variance bound of JENDL-4.

■ Na-23 inelastic-scattering has a similar sensitivity profile with total (elastic-scattering).

This decrease of inelastic-scattering is consistent with the overestimation of Na void reactivity for ZPPR, and underestimation for BFS (negative reactivity). -> next slide. _5

C/E Change by ADJ2010 Adjustment - Na void reactivity -C/E value 1.4 JENDL-4.0 ZEBRA BFS experiment MASURCA ADJ2010 Sensitivity experiment experiment 1.3 ZPPR experiment 1.2 for 1.1 **ZPPR-10A** $\pm 10\%$ 1.0 JOYO Mk-I 0.9 **Na Void Reactivity** (Cross-section-induced uncertainty) 0.8 < U O BFS-62-2 JOYO MK-1 ZPPR-10A ZPPR-108 BFS-62-3A Fig. (ZPPR-10A, NaV step3(172drawer, 8inch)) U-238 Fig. (ZPPR-10A, NaV step3(172drawer, 8inch)) Na-23 0.15 0.06 inela capture capture mu fission mu elastic n2n nu n2n inela elastic 0.04 0.10 Na-23 **U-238** 0.02 0.05 Sensitivity Sensitivity 0.00 0.00 -0.02-0.05-0.04Inelastic scattering -0.06 10¹ -0.10 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{1} 10² 10^{3} 10^{4} 10⁶ 10⁵ 26 Neutron Energy (eV) Neutron Energy (eV)

Concluding Remarks

- 1. From ADJ2010 adjustment, we may recommend the followings to nuclear data evaluators: *<These have high sensitivity to good integral data.>*
 - Pu-239 capture --> Increase over 3keV by 7 to 9%.
 - > The adjustment mechanism is explainable but complicated and complex.
 - ➢ It is necessary to be very careful if use this recommendation because the increase is determined by a combination of integral experiments.
 - Pu-239 fission --> Keep current data within 0.5% in average.
 - Pu-239 nu --> Keep current data within 0.2% in average.
 - **U-238 capture -->** Keep current data within **2%**.

CIELO project.

- U-235 capture --> Follow JENDL-4.0 within its variance.
- 2. Although large alteration is observed, we cannot make comments:
 - Pu-239 fission spectrum and Na-23 inelastic --> should study more as one combined set including U-238 inelastic and Pu-239 inelastic.

<compensation problem exists.>

- **U-238 mu-ave.** --> Need to be converged among the major libraries.
- U-235 fission --> Current fast-region integral database is not sufficient.
 Fe-56 elastic scattering and Na-23 elastic --> Should be improved in

Appendix: Theory of Cross-section Adjustment

X J.B.Dragt, et al.: "Methods of Adjustment and Error Evaluation of Neutron Capture" Cross Sections; Application to Fission Product Nuclides," NSE 62, pp.117-129, 1977

Based on the Bayes theorem, i.e., the conditional probability estimation method \rightarrow To maximize the posterior probability that a cross-section set, T, is true, under the condition that the information of integral experiment, *Re*, is obtained.

 $J(T) = (T - T_{\theta})^{t} M^{-1}(T - T_{\theta}) + [Re - Rc(T)]^{t} [Ve + Vm]^{-1} [Re - Rc(T)]$

Minimize the function J(T). $\rightarrow dJ(T)/dT = 0$

The adjusted cross-section set T', and its uncertainty (covariance), $M'_{(Algebra)}$ $T' = T_{\theta} + MG' [GMG' + Ve + Vm]^{-1} [Re - Rc(T_{\theta})]$ ✓ If GMG^t << Ve+Vm, T' \doteqdot T₀ and GM'G^t \doteqdot GMG^t $M' = M - MG^{t}[GMG^{t} + Ve + Vm]^{-1}GM$

✓ If GMG^t>>Ve+Vm, GM'G^t=Ve+Vm ✓ If GMG^t=Ve+Vm, GM'G^t= $1/2 \times GMG^t$

Prediction error induced by the cross-section errors

Before adjustment: *GMG*^t

Where, T_{θ} : Cross-section set before adjustment **M**: Covariance before adjustment experiments

- *Re*: Measured values of integral experiments
- **Rc**: Analytical values of integral experiments

After adjustment: GM'G'

- *Ve* : Experimental errors of integral experiments *Vm* : Analytical modeling errors of integral
 - **G**: Sensitivity coefficients, $(dR/R)/(d\sigma/\sigma)$

Adjustment Motive Force

2G▲

Motive force:
$$F_{i,j} = \frac{\|(\Delta T/T)_{i,j}\|}{\|J\|} \cos \theta$$

where $\cos \theta = \frac{(\Delta T/T)_{i,j} \cdot J}{\|(\Delta T/T)_{i,j}\| \|J\|}$
 $(\Delta T/T)_{i,j} = M_j G_{i,j}^{\mathrm{T}} [G_{i,j} M_j G_{i,j}^{\mathrm{T}} + V_i]^{-1} (J - R_{c,i}/R_{e,i}]$
A special adjustment result, in which only one reaction, *j*, is adjusted by using only one integral experiment, *i*.

Motive force is determined by reaction and integral experiment
 independent from a combination of integral experiments

Motive force is a scalar value (averaged over all energy group)
 ±100% alterations for all energy group → motive force = ±1
 0% alterations for all energy group → motive force = 0

Adjustment Potential

a different kind of integral experiments, such as criticality and Na void reactivity

Motive Forces for Pu-239 capture

No.	Motive force	Integra experiments		
1	+4.65	BFS-66-1 control rod worth [Ring 1-4]		
2 - 8	+4.40 +2.60	ZPPR-18A control rod worths (including 7 cases)		
9	+2.92	ZPPR-10A criticality		
10	+2.45	ZPPR-9 criticality		
	•	:		
484, 485	-0.98	ZPPR-18A control rod worths (including 2 cases)		
486	-0.99	JOYO MK-I criticality (64 fuel S/As)		
487	-1.06	JEZEBEL criticality		
488	-1.07	JOYO MK-I criticality (70 fuel S/As)		

A lot of experiments have large positive *motive forces* Even if some of them are removed, the cross-section alteration of Pu-239 capture is not changed significantly

Assumption of Two Situations for Motive Forces

F: freely adjustable

If only one integral experiment has a large *motive force* for a reaction, the cross section of the reaction is "freely adjustable" and altered.

C: conflict

If more than two *motive forces* with large potentials have opposite signs, it is considered as a "conflict". In this case, the cross section of the reaction is not significantly adjusted. Then, the other "freely adjustable" cross sections are altered.

$$i = 1$$

$$i =$$

Motive Forces & Potentials for Integral Experiments used for Small Test Cases

	ZPPR-9				JEZEBEL			
	keff		C28/F49		F28/F49		keff	
Pu-239 capture	+2.45 (-1.84)	1	+0.28 (-0.15)	0	+0.34 (+0.37)	0	-1.06 (-0.94)	Ļ
Pu-239 fission	-0.24 (+0.18)	ſ	+0.18 (-0.10)	î	-0.07 (-0.07)	0	+0.07 (+0.06)	0
Pu-239 χ	+2.26 (-1.70)	1	-1.20 (+0.66)	ſ	-2.83 (-3.07)	Ļ	-1.98 (-1.77)	Ļ
Pu-239 (n, n)	-0.12 (+0.09)	0	-0.01 (+0.00)	0	-0.00 (-0.01)	0	+0.57 (+0.51)	1
U-238 capture	+0.55 (+1.20)	1	-1.04 (+0.579	ſ	+0.21 (+0.23)	1	-0.00 (-0.00)	0
U-238 fission	-1.59 (+1.20)	ſ	+0.02 (-0.01)	0	+0.62 (+0.67)	1	+0.00 (+0.00)	0
U-238 (n, n')	+0.57 (-0.43)	1	-1.13 (+0.62)	ſ	-0.39 (-0.43)	1	+0.00 (+0.00)	0 33

Cross-section Alteration of Pu-239 (n, n)

