METHODS AND APPROACHES DEVELOPMENT AT ORNL FOR PROVIDING FEEDBACK FROM INTEGRAL BENCHMARK EXPERIMENTS FOR IMPROVEMENT OF NUCLEAR DATA FILES

Vladimir Sobes*, ORNL
Luiz Leal, IRSN
Goran Arbanas, ORNL
Bassam A. Khuwaileh, NCSU
Mark L. Williams, ORNL
Michael E. Dunn, ORNL
Hany S. Abdel-khalik, Purdue

*sobesv@ornl.gov
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SAMINT: A Code for Nuclear Data Adjustment with SAMMY Based on Integral Experiments</td>
</tr>
<tr>
<td>2</td>
<td>INSURE: INverse Sensitivity/UnceRTainty Estimator</td>
</tr>
</tbody>
</table>
SAMINT: A Code for Nuclear Data Adjustment with SAMMY Based on Integral Experiments

- Allow coupling of differential and integral data evaluation in a continuous-energy framework
- Update the resonance parameter evaluation directly based on integral benchmark experiments
Integral Experiments to Aid Nuclear Data Evaluation

• SAMINT can be used to extract information from integral benchmarks to aid the nuclear data evaluation process.

• Near the end of the evaluation based on differential experimental data, integral data can be used to:
 • Resolve remaining ambiguity between differential data sets
 • Guide the evaluator to troublesome energy regions
 • Inform the evaluator of the most important nuclear data parameters to integral benchmark calculations
 • Improve the nuclear data covariance matrix evaluation
SAMINT Proper Uses

- **SAMINT is not intended** to bias the nuclear data towards fitting a certain set of integral experiments.
- SAMINT should be used to **supplement** evaluation of differential experimental data.
- Using the GLLS methodology ensures that the updated nuclear data parameters respect the original fit of the differential data.
Using SAMINT with SAMMY

Differential Experimental Data

\[\frac{d\sigma(E)}{dP} \]

\[\frac{dk}{dP} \]

\[\frac{dk}{d\sigma(E)} \]

Integral Experimental Data

P stands for all resonance parameters: \(E_\lambda, \Gamma_\gamma, \Gamma_n, \Gamma_f \), etc.
SAMINT Capabilities for Initial Release from RSICCC

• Current Capabilities
 – Adjusting resolved resonance parameters and associated covariance
 – Adjusting number of prompt neutrons per fission
 – Calculating continuous energy cross sections and eta values (reactor physics) to satisfy integral benchmarks
 – Works with both CE TSUNAMI and MCNP-6 k-eigenvalue sensitivities
 – Iteration for non-linearity
SAMINT Release Through RSICCC

- SAMINT will be distributed with the SAMMY code from RSICCC! https://rsicc.ornl.gov/
- Optional compile-time inclusion
- LAPACK/BLAS for all linear algebra operations
- Mac, Linux, Windows
- Version control
- Automated test cases

<table>
<thead>
<tr>
<th>Case Name</th>
<th>SAMINT Capability</th>
<th>Sensitivity Code</th>
<th>Notes</th>
</tr>
</thead>
</table>
| tr181 | - Resonance Parameter updating
- Eta updating with correlations
- Eta updating without correlations
- Integral experiment covariance matrix | CE TSUNAMI-3D | Independently confirmed by MATLAB calculations |
| tr182 | - 56Fe case
- Fitting resonance parameters with inelastic channel open | MCNP6 | Complication comes from appearance of zero cross-sections due to threshold reactions |
| tr183 | - 239Pu case
- Fitting resonance parameter and nu-bar simultaneously
- Independent eta updating | MCNP6 | |

Sample Calculations

• As a demonstration calculation, SAMINT was used to adjust the resolved resonance region evaluation of 56Fe.

• Four integral experiments from the ICSBEP were selected.

• Energy region of evaluation: 1e-5 eV to 2 MeV.

• 1190 resonance parameters varied:
 - Γ_γ: 450 keV – 2MeV
 - $\Gamma_{(n,n')1}$ and $\Gamma_{(n,n')2}$: 846 keV – 2MeV
Inelastic cross section of ^{56}Fe before ($\chi^2 = 73.3382$) and after ($\chi^2 = 73.6877$) the adjustment based on integral experimental data plotted on top of differential experimental data of Plompen, presented with one standard deviation error bars.
Inelastic cross section of 56Fe before ($\chi^2 = 23.6023$) and after ($\chi^2 = 22.9036$) the adjustment based on integral experimental data plotted on top of differential experimental data of Perey, presented with one standard deviation error bars.
56Fe Results

- **C/E:** Computed Value
 Experimentally Measured Value

<table>
<thead>
<tr>
<th>Integral Experiment Name</th>
<th>Before Adjustment</th>
<th>After Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMF013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMF021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMF025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMF032</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expanded Capabilities

First Update Release (Spring)

• Cross-Isotope correlation matrices
 – Determine the posterior correlation matrix created by adjusting several isotopes simultaneously

• Use of Angular Distribution Sensitivity with MCNP6 for adjusting resonance parameters

• Immediate application: ^{63}Cu and ^{65}Cu

In FY2016

• Extension to Unresolved Resonance Region

• Support of Generalized Sensitivity Capabilities of CE TSUNAMI-3D
Summary

• SAMINT should be used to **supplement** evaluation of differential experimental data.

• SAMINT will also improve the nuclear data covariance matrix evaluation.

• Plans to extend the SAMINT methodology to the unresolved resonance region and the high energy region.

• Support for this work was provided by the US DOE Nuclear Criticality Safety Program.
INSURE: INverse Sensitivity/UnceRtainty Estimator

• Determine target accuracies of nuclear data needed to model applications within prescribed tolerances

• Minimize the cost of acquiring improved data that would yield acceptable uncertainties of responses
Applications

Application Examples:

• Light Water Reactors
• Fast neutron reactors
• Spent Nuclear Fuel
 – Reprocessing
 – Transport
 – Disposal

Response Examples

– Neutron multiplication factor
– Cycle length
– Power distribution
– Reaction rate ratio
Inverse S/U: Definitions

• A nuclear application design specifies maximum allowed uncertainties on performance parameters (“responses”)
 – e.g. the multiplicity factor and its tolerance
 \[R \pm \Delta R \]

• Neutron transport using existing cross section uncertainties often leads to an application response uncertainty greater than the maximum allowed, i.e.:
 \[\sigma_0 \pm \Delta \sigma_0 \Rightarrow R_0 \pm \Delta R_0 \quad \text{where} \quad \Delta R_0 > \Delta R \]

• Inverse S/U: What set of improved data would lower the response uncertainty below the specified tolerance?
 – While minimizing the cost of data measurements
 \[\sigma' \pm \Delta \sigma' \Rightarrow R' \pm \Delta R' \leq \Delta R \quad \text{for} \quad \min(\text{cost}[\Delta \sigma']) \]
Inverse S/U Math

• Given a desired responses ± tolerances: \(R \pm \Delta R \)
• And the existing data ± uncertainties: \(\sigma_0 \pm \Delta \sigma_0 \)
• Minimize the cost of acquiring improved data uncertainties that yield a response uncertainty within tolerance:

\[
\text{min}\{\text{Cost}[\Delta \sigma]\} \quad \text{such that} \quad S(\Delta \sigma)^2 S^T \leq (\Delta R)^2 \\
S = \left. \frac{\delta R(x)}{\delta \sigma} \right|_{\sigma = \sigma_0}
\]

• This is a constrained optimization problem:
 – MINCON: open source subroutine is used by MATLAB and DAKOTA
Including Integral Benchmark Experiments in IS/U

- Differential data uncertainties are limited by experimental methods
- Some data already at the present-day limits of experimental precision
- Uncertainties required by IS/U lower than these may be unrealistic

Table II. Uncertainties of the present-day state-of-the-art measurements for various cross sections

<table>
<thead>
<tr>
<th>Reaction</th>
<th>MT</th>
<th>Min. Rel. Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fission</td>
<td>18</td>
<td>0.7%</td>
</tr>
<tr>
<td>Capture</td>
<td>102</td>
<td>2%</td>
</tr>
<tr>
<td>Neutron yields</td>
<td>452</td>
<td>0.3%</td>
</tr>
<tr>
<td>Elastic scattering</td>
<td>2</td>
<td>2%</td>
</tr>
</tbody>
</table>

- IS/U results obtained with integral benchmark experiments afford larger differential data uncertainties, i.e.: lower cost of differential data
Including Integral Benchmark Experiments in IS/U

\[\Delta \sigma \rightarrow \text{TSURFER} \rightarrow \Delta R \rightarrow \Delta R_{IBE} \rightarrow \Delta \sigma' \]

\[\text{Integral Benchmark Experiment} \]

\[\Delta R'_{IBE} \rightarrow \Delta R' \]

\[\Delta \sigma \rightarrow \text{TSURFER} \rightarrow \Delta R \rightarrow \Delta R_{IBE} \rightarrow \Delta \sigma' \]
Example Calculations

• For PWR fuel array:
 • for extant data \(dk_{\text{eff}} = 0.0031 \)
 • we desire \(dk_{\text{eff}} = 0.0010, \text{var}(k_{\text{eff}})=10^{-6} \)

<table>
<thead>
<tr>
<th>TABLE I. SUMMARY OF INVERSE S/U RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Benchmark</td>
</tr>
<tr>
<td>Cost (arb.)</td>
</tr>
<tr>
<td>\text{var}(k_{\text{eff}})</td>
</tr>
</tbody>
</table>

• An overall 6-fold decrease in data cost was achieved by including integral benchmarks in the Inverse S/U calculations.

• The integral benchmark experiment used in this work is water-moderated UO\(_2\) fuel rods in 2.032-cm square-pitched arrays (LEU-COMP-THERM-001). This experiment was chosen because of its similarity to the PWR fuel-rods.
Cost Function

• So far, the cost of a differential experiment has been assumed to be inversely proportional with the uncertainty in the differential data.

• A realistic cost function would account for:
 – duration of measurements
 • Needed to run the facility, pay the staff, etc.
 • Inversely proportional to the cross section
 – Smaller cross section requires longer run times
 – Cost of the target
 • manufactured or borrowed?
 – In collaboration with Klaus Guber we are devising more realistic cost functions.
Inverse S/U Results

Required relative uncertainties (benchmark vs. no benchmark) for neutron capture cross section (i.e. MT=102) for U-235 (left) and for U-238 (right). The plots show that inclusion of a benchmark affords less stringent uncertainties.
For U-235 neutron yield (MT=452) extant uncertainties (green) are already near (or smaller than) the ENDF guidance value of 0.3%. Here too, the IS/U with integral benchmark experiment (IBE) (red) require uncertainties that are not as small as those w/o IBEs (blue).
Summary

• A new application of the Inverse Sensitivity/Uncertainty to cost-optimized prioritization of nuclear data measurements

• Demonstrated the benefit of using integral benchmarks in the IS/U
 – Without integral benchmark experiments differential data uncertainties may be unachievable

• IS/U capability can be used for various nuclear fuel cycle applications
Outlook

• Formalism sufficiently general to minimize the TOTAL cost of data
 – Differential data and integral benchmark experiments simultaneously
 – Can be adapted to optimize systematic and statistical uncertainties simultaneously
 – It may be extended to optimize and design integral benchmark experiment

• Complexity reduction methods developed by Hany Abdel-Khalik are being applied to decrease the computational load for more complex responses
METHODS AND APPROACHES DEVELOPMENT AT ORNL FOR PROVIDING FEEDBACK FROM INTEGRAL BENCHMARK EXPERIMENTS FOR IMPROVEMENT OF NUCLEAR DATA FILES

Vladimir Sobes*, ORNL
Luiz Leal, IRSN
Goran Arbanas, ORNL
Bassam A. Khuwaileh, NCSU
Mark L. Williams, ORNL
Michael E. Dunn, ORNL
Hany S. Abdel-khalik, Purdue

*sobesv@ornl.gov