Perturbation/sensitivity calculations with Serpent

Manuele Aufiero, Adrien Bidaud, Pablo Rubiolo
LPSC/CNRS Grenoble
A collision history-based approach to GPT calculations

Manuele Aufiero - LPSC/CNRS Grenoble

Perturbation/sensitivity calculations with Serpent
Considered response functions

Effect of a perturbation of the parameter x on the response R:

$$S_x^R \equiv \frac{dR/R}{dx/x}$$

Considered response functions:

- $R = k_{\text{eff}}$ Effective multiplication factor
 (Iterated Fission Probability method, Politecnico di Milano – PSI collaboration)

- $R = \frac{\langle \Sigma_1, \phi \rangle}{\langle \Sigma_2, \phi \rangle}$ Reaction rate ratios

- $R = \frac{\langle \phi^\dagger, \Sigma_1 \phi \rangle}{\langle \phi^\dagger, \Sigma_2 \phi \rangle}$ Bilinear ratios (Adjoint-weighted quantities)

- $R = ?$ Something else
A collision history-based approach to GPT calculations
Reactor rate ratios
Adjoint-weighted quantities (bilinear ratios)

Particle’s weight perturbation

All the cross sections (and probability distributions) are artificially increased by a factor \(f \).

Events are rejected with a probability of \((1 - 1/f) \).

\[f = 0.5 \]

\[
 w^* \approx w^0 \cdot \left(1 + \frac{d\Sigma_{n,2n}}{\Sigma_{n,2n}} \right) \cdot \left(1 + \frac{d\Sigma_{s}}{\Sigma_{s}} \right) \cdot \left(1 - \frac{d\Sigma_{f}}{\Sigma_{f}} \right) \cdot \left(1 + \frac{d\Sigma_{s}}{\Sigma_{s}} \right) \cdot \left(1 - \frac{d\Sigma_{c}}{\Sigma_{c}} \right) \cdot \left(1 + \frac{d\Sigma_{f}}{\Sigma_{f}} \right) \cdot \left(1 + \frac{d\Sigma_{s}}{\Sigma_{s}} \right) \cdot \left(1 + \frac{d\Sigma_{f}}{\Sigma_{f}} \right) \ldots
\]
Adopting the distribution of the corrected particles weight in the reference system as unbiased estimator of the “exact” neutron flux distribution in the perturbed system.

Re-normalization of the total population weight.

Convergence of the propagation (latent?) generations.
A collision history-based approach to GPT calculations
Reaction rate ratios
Adjoint-weighted quantities (bilinear ratios)

Particle’s weight perturbation

\[x = \text{nuclear data} \] for reaction \(r \), on the isotope \(i \), in the material \(m \), in the incident neutron energy bin \(e \), in the volume \(s \) (outgoing neutron energy bin \(e' \) and scattering cosine bin \(l \))

\[
\frac{\partial w_n}{\partial x/x} \approx w_n \cdot \sum_{g=(\alpha-\lambda)}^{\alpha} \left((n,g) \text{ACC}_x - (n,g) \text{REJ}_x \right)
\]

\(\alpha \) = present generation
\(\lambda \) = number of propagation generations

\(\text{ACC}_x \) = accepted events \(x \) in the history of the particle \(n \)
\(\text{REJ}_x \) = rejected events \(x \)
Reaction rate ratios (method)

\[R = \frac{\langle \Sigma_1, \phi \rangle}{\langle \Sigma_2, \phi \rangle} \]

\[R' = \frac{\langle \Sigma_1 + \Delta \Sigma_1, \phi + \Delta \phi \rangle}{\langle \Sigma_2 + \Delta \Sigma_2, \phi + \Delta \phi \rangle} \]

Neglecting cross terms...

\[\frac{\Delta R}{R} = \frac{\langle \Delta \Sigma_1, \phi \rangle}{\langle \Sigma_1, \phi \rangle} - \frac{\langle \Delta \Sigma_2, \phi \rangle}{\langle \Sigma_2, \phi \rangle} + \frac{\langle \Sigma_1, \Delta \phi \rangle}{\langle \Sigma_1, \phi \rangle} - \frac{\langle \Sigma_2, \Delta \phi \rangle}{\langle \Sigma_2, \phi \rangle} \]

\[S^R_x = \frac{\langle \frac{\partial \Sigma_1}{\partial x/x}, \phi \rangle}{\langle \Sigma_1, \phi \rangle} - \frac{\langle \frac{\partial \Sigma_2}{\partial x/x}, \phi \rangle}{\langle \Sigma_2, \phi \rangle} + \frac{\langle \Sigma_1, \frac{\partial \phi}{\partial x/x} \rangle}{\langle \Sigma_1, \phi \rangle} - \frac{\langle \Sigma_2, \frac{\partial \phi}{\partial x/x} \rangle}{\langle \Sigma_2, \phi \rangle} \]

\[S^R_x \underbrace{=} \frac{\langle \frac{\partial \Sigma_1}{\partial x/x}, \phi \rangle}{\langle \Sigma_1, \phi \rangle} - \frac{\langle \frac{\partial \Sigma_2}{\partial x/x}, \phi \rangle}{\langle \Sigma_2, \phi \rangle} \underbrace{\text{direct terms}} + \frac{\langle \Sigma_1, \frac{\partial \phi}{\partial x/x} \rangle}{\langle \Sigma_1, \phi \rangle} - \frac{\langle \Sigma_2, \frac{\partial \phi}{\partial x/x} \rangle}{\langle \Sigma_2, \phi \rangle} \underbrace{\text{indirect terms}} \]
Reaction rate ratios (method)

Considering track-length estimators (for simplicity)...

\[
\langle \Sigma_1, \phi \rangle = q \cdot \sum_{n \in \alpha} \sum_{t \in n} w_n \cdot \ell_t \Sigma_1
\]

\[
\langle \Sigma_1, \frac{\partial \phi}{\partial x} \rangle = q \cdot \sum_{n \in \alpha} \sum_{t \in n} w_n \cdot \frac{\partial w_n}{w_n} \cdot \frac{\partial x}{x} \cdot \ell_t \Sigma_1
\]

\[
\langle \Sigma_1, \frac{\partial \phi}{\partial x} \rangle = q \cdot \sum_{n \in \alpha} \sum_{t \in n} w_n \left[\sum_{g = (\alpha - \lambda)}^{\alpha} \left(ACC_{x}^{(n,g)} - REJ_{x}^{(n,g)} \right) \right] \ell_t \Sigma_1
\]
Indirect terms:

\[
\frac{\langle \Sigma_1, \frac{\partial \phi}{\partial x} / x \rangle}{\langle \Sigma_1, \phi \rangle} = \frac{q \cdot \sum_{n \in \alpha} \sum_{t \in n} w_n \left[\sum_{g=(\alpha-\lambda)}^{\alpha} \left(ACC_x^{(n,g)} - REJ_x^{(n,g)} \right) \right] \ell_t \Sigma_1}{q \cdot \sum_{n \in \alpha} \sum_{t \in n} w_n \cdot \ell_t \Sigma_1}
\]

Average net number of \(x \) events (i.e., real - virtual) in the last \(\lambda \) generations, weighted on the contributions to the track length estimator of \(\langle \Sigma_1, \phi \rangle \)

Indirect part of \(S_x^R \) is obtained as the difference between the average number of net \(x \) events in the last \(\lambda \) generations, weighted on the tally contributions for two generic detectors \(\langle \Sigma_1, \phi \rangle \) and \(\langle \Sigma_2, \phi \rangle \)
A collision history-based approach to GPT calculations

Reaction rate ratios
Adjoint-weighted quantities (bilinear ratios)

Reaction rate ratios (results)

\[R = \frac{\iiint \phi(r, E) \cdot \sigma_f^{238} U(E) \, dE \, dr}{\iiint \phi(r, E) \cdot \sigma_f^{235} U(E) \, dE \, dr} \]

Jezebel (Pu sphere)
PU-MET-FAST-001

\(^{238}\text{U} / ^{235}\text{U}\) fission rate ratio
(measured in the center of the system)
A collision history-based approach to GPT calculations
Reaction rate ratios
Adjoint-weighted quantities (bilinear ratios)

Reaction rate ratios (results)

Flattop-Pu (Popsy)
PU-MET-FAST-006

238U/235U fission rate ratio
(measured in the center of the system)

(not in scale)
A collision history-based approach to GPT calculations

Reaction rate ratios

Adjoint-weighted quantities (bilinear ratios)

Reaction rate ratios (results)

\[R = \frac{\iiint \phi(r, E) \cdot \sigma_{238}^U(E) \, dE \, dr}{\iiint \phi(r, E) \cdot \sigma_{235}^U(E) \, dE \, dr} \]

UAM TMI-1 PWR pin-cell

\(^{238}\text{U}/^{235}\text{U}\) fission rate ratio in the fuel pellet

Manuele Aufiero - LPSC/CNRS Grenoble

Perturbation/sensitivity calculations with Serpent
A collision history-based approach to GPT calculations

Reaction rate ratios

Adjoint-weighted quantities (bilinear ratios)

Reaction rate ratios (results)

ERANOS results from Sandro Pelloni @ PSI

Jezebel - F28/F25 - Pu-239 - elastic scattering

F28/F25 sensitivity - 10 generations

- Sensitivity per lethargy unit
- Energy (eV)

Extended SERPENT-2 (JEFF-3.1)
Extended SERPENT-2 (ENDF/B-VII)
ERANOS
TSUNAMI-1D

Manuele Aufiero - LPSC/CNRS Grenoble
Perturbation/sensitivity calculations with Serpent
A collision history-based approach to GPT calculations

Reaction rate ratios

Adjoint-weighted quantities (bilinear ratios)

Reaction rate ratios (results)

ERANOS results from Sandro Pelloni @ PSI

Jezebel - F28/F25 - Pu-239 - inelastic scattering

F28/F25 sensitivity - 10 generations
A collision history-based approach to GPT calculations
Reaction rate ratios
Adjoint-weighted quantities (bilinear ratios)

Reaction rate ratios (results)
ERANOS results from Sandro Pelloni @ PSI
A collision history-based approach to GPT calculations

Reaction rate ratios
Adjoint-weighted quantities (bilinear ratios)

Reaction rate ratios (results)
ERANOS results from Sandro Pelloni @ PSI

Popsy (Flattop) - F28/F25 - Pu-239 - chi total
F28/F25 sensitivity - 10 generations - ENDF/B-VII

Sensitivity per lethargy unit
Extended SERPENT-2
TSUNAMI-1D

Manuele Aufiero - LPSC/CNRS Grenoble

Perturbation/sensitivity calculations with Serpent
Reaction rate ratios (results)
ERANOS results from Sandro Pelloni @ PSI

Popsy (Flattop) - F28/F25 - Pu-239 - fission
F28/F25 sensitivity - 10 generations - JEFF-3.1

Energy (eV)
Sensitivity per lethargy unit
Extended SERPENT-2
ERANOS

Manuele Aufiero - LPSC/CNRS Grenoble
Perturbation/sensitivity calculations with Serpent
A collision history-based approach to GPT calculations

Reaction rate ratios

Adjoint-weighted quantities (bilinear ratios)

Reaction rate ratios (results)

ERANOS results from Sandro Pelloni @ PSI

UAM TMI-1 PWR cell - F28/F25 - H - total

F28/F25 sensitivity - 10 generations - ENDF/B-VII

Perturbation/sensitivity calculations with Serpent

Manuele Aufiero - LPSC/CNRS Grenoble
UAM TMI-1 PWR cell - F28/F25 - U-238 - disappearance

F28/F25 sensitivity - 10 generations - ENDF/B-VII

Manuele Aufiero - LPSC/CNRS Grenoble

Perturbation/sensitivity calculations with Serpent
Reaction rate ratios (results)

ERANOS results from Sandro Pelloni @ PSI

Energy integrated sensitivity coefficients for Jezebel for the response function \(R = F_{28}/F_{25} \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(S_x^R)</th>
<th>JEFF-3.1</th>
<th>Serpent</th>
<th>Eranos</th>
<th>Rel. diff</th>
<th>ENDF/B-VII</th>
<th>Serpent</th>
<th>TSUNAMI-1D</th>
<th>Rel. diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{239}\text{Pu}) (\sigma_{\text{tot}})</td>
<td>-0.14856 (\pm) 0.1%</td>
<td>-0.14923</td>
<td>-0.5%</td>
<td>-0.16404 (\pm) 0.1%</td>
<td>-0.16477</td>
<td>-0.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{239}\text{Pu}) (\sigma_{\text{inl}})</td>
<td>-0.13475 (\pm) 0.0%</td>
<td>-0.13308</td>
<td>1.2%</td>
<td>-0.15996 (\pm) 0.0%</td>
<td>-0.15898</td>
<td>0.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{239}\text{Pu}) (\sigma_{\text{ela}})</td>
<td>-0.06844 (\pm) 0.2%</td>
<td>-0.06854</td>
<td>-0.1%</td>
<td>-0.06386 (\pm) 0.2%</td>
<td>-0.06396</td>
<td>-0.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{239}\text{Pu}) (\sigma_{\text{fis}})</td>
<td>+0.04750 (\pm) 0.1%</td>
<td>+0.04607</td>
<td>3.0%</td>
<td>+0.05173 (\pm) 0.1%</td>
<td>+0.05002</td>
<td>3.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{240}\text{Pu}) (\sigma_{\text{tot}})</td>
<td>-0.01255 (\pm) 0.3%</td>
<td>-0.01243</td>
<td>1.0%</td>
<td>-0.01407 (\pm) 0.3%</td>
<td>-0.01405</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{239}\text{Pu}) (\sigma_{\text{dis}})</td>
<td>+0.00995 (\pm) 0.1%</td>
<td>+0.01005</td>
<td>-1.0%</td>
<td>+0.01006 (\pm) 0.1%</td>
<td>+0.01008</td>
<td>-0.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{240}\text{Pu}) (\sigma_{\text{inl}})</td>
<td>-0.00822 (\pm) 0.2%</td>
<td>-0.00820</td>
<td>0.2%</td>
<td>-0.00803 (\pm) 0.2%</td>
<td>-0.00798</td>
<td>0.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{240}\text{Pu}) (\sigma_{\text{ela}})</td>
<td>-0.00387 (\pm) 0.7%</td>
<td>-0.00384</td>
<td>0.8%</td>
<td>-0.00403 (\pm) 0.7%</td>
<td>-0.00409</td>
<td>-1.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{239}\text{Pu}) (\sigma_{n,xn})</td>
<td>-0.00278 (\pm) 0.2%</td>
<td>-0.00251</td>
<td>9.7%</td>
<td>-0.00201 (\pm) 0.2%</td>
<td>-0.00193</td>
<td>4.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{240}\text{Pu}) (\sigma_{\text{fis}})</td>
<td>-0.00103 (\pm) 1.9%</td>
<td>-0.00097</td>
<td>5.8%</td>
<td>-0.00256 (\pm) 0.7%</td>
<td>-0.00253</td>
<td>1.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{240}\text{Pu}) (\sigma_{\text{dis}})</td>
<td>+0.00066 (\pm) 0.4%</td>
<td>+0.00066</td>
<td>0.0%</td>
<td>+0.00062 (\pm) 0.5%</td>
<td>+0.00062</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{241}\text{Pu}) (\sigma_{\text{tot}})</td>
<td>-0.00061 (\pm) 1.6%</td>
<td>-0.00045</td>
<td>26.2%</td>
<td>-0.00069 (\pm) 1.5%</td>
<td>-0.00068</td>
<td>1.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{241}\text{Pu}) (\sigma_{\text{inl}})</td>
<td>-0.00046 (\pm) 0.9%</td>
<td>-0.00047</td>
<td>-2.2%</td>
<td>-0.00061 (\pm) 0.8%</td>
<td>-0.00060</td>
<td>1.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bilinear ratios (method)

\[R = \frac{\langle \phi^\dagger, \Sigma_1 \phi \rangle}{\langle \phi^\dagger, \Sigma_2 \phi \rangle} \]

Examples:

\[\beta_{\text{eff}} = \frac{\langle \phi^\dagger, \frac{1}{k_{\text{eff}}} \chi_d \bar{\nu}_d \Sigma_f \phi \rangle}{\langle \phi^\dagger, \frac{1}{k_{\text{eff}}} \chi_t \bar{\nu}_t \Sigma_f \phi \rangle} \]
\[\ell_{\text{eff}} = \frac{\langle \phi^\dagger, \frac{1}{\nu} \phi \rangle}{\langle \phi^\dagger, \frac{1}{k_{\text{eff}}} \chi_t \bar{\nu}_t \Sigma_f \phi \rangle} \]
\[\alpha_{\text{coolant}} = -\frac{\langle \phi^\dagger, \Sigma_{t,\text{coolant}} \phi \rangle}{\langle \phi^\dagger, \frac{1}{k_{\text{eff}}} \chi_t \bar{\nu}_t \Sigma_f \phi \rangle} \]
Bilinear ratios (method)

\[
R' = \frac{\langle \phi^\dagger + \Delta \phi^\dagger, (\Sigma_1 + \Delta \Sigma_1)(\phi + \Delta \phi) \rangle}{\langle \phi^\dagger + \Delta \phi^\dagger, (\Sigma_2 + \Delta \Sigma_2)(\phi + \Delta \phi) \rangle}
\]

\[
\frac{\Delta R}{R} = \frac{\langle \phi^\dagger, \Delta \Sigma_1 \phi \rangle}{\langle \phi^\dagger, \Sigma_1 \phi \rangle} - \frac{\langle \phi^\dagger, \Delta \Sigma_2 \phi \rangle}{\langle \phi^\dagger, \Sigma_2 \phi \rangle} + \frac{\langle \phi^\dagger, \Sigma_1 \Delta \phi \rangle}{\langle \phi^\dagger, \Sigma_1 \phi \rangle} - \frac{\langle \phi^\dagger, \Sigma_2 \Delta \phi \rangle}{\langle \phi^\dagger, \Sigma_2 \phi \rangle} + \frac{\langle \Delta \phi^\dagger, \Sigma_1 \phi \rangle}{\langle \phi^\dagger, \Sigma_1 \phi \rangle} - \frac{\langle \Delta \phi^\dagger, \Sigma_2 \phi \rangle}{\langle \phi^\dagger, \Sigma_2 \phi \rangle}
\]

\[
S_x^R = \frac{\langle \phi^\dagger, \frac{\partial \Sigma_1}{\partial x/x} \phi \rangle}{\langle \phi^\dagger, \Sigma_1 \phi \rangle} - \frac{\langle \phi^\dagger, \frac{\partial \Sigma_2}{\partial x/x} \phi \rangle}{\langle \phi^\dagger, \Sigma_2 \phi \rangle} + \frac{\langle \phi^\dagger, \Sigma_1 \frac{\partial \phi}{\partial x/x} \rangle}{\langle \phi^\dagger, \Sigma_1 \phi \rangle} - \frac{\langle \phi^\dagger, \Sigma_2 \frac{\partial \phi}{\partial x/x} \rangle}{\langle \phi^\dagger, \Sigma_2 \phi \rangle} + \frac{\langle \frac{\partial \phi^\dagger}{\partial x/x}, \Sigma_1 \phi \rangle}{\langle \phi^\dagger, \Sigma_1 \phi \rangle} - \frac{\langle \frac{\partial \phi^\dagger}{\partial x/x}, \Sigma_2 \phi \rangle}{\langle \phi^\dagger, \Sigma_2 \phi \rangle}
\]
Bilinear ratios (method)

Adopting Iterated Fission Probability importance estimators:

\[
I_{n}^{(\gamma)} = \frac{1}{q'} \frac{1}{w_n} \sum_{k \in d_n^{(\gamma)}} w_k
\]

Importance of neutrons in generation \(\alpha\) is calculated as function of the neutron descendants in generation \(\alpha + \gamma\).

Effect of perturbation on neutron importance:

\[
\frac{\partial I_{n}^{(\gamma)}}{\partial x/x} = \frac{1}{w_n} \sum_{k \in d_n^{(\gamma)}} \frac{\partial w_k}{\partial x/x} - \frac{1}{w_n^2} \frac{\partial w_n}{\partial x/x} \sum_{k \in d_n^{(\gamma)}} w_k
\]
Bilinear ratios (method)

Indirect terms...

Effect of perturbation on the forward flux:

\[
\langle \phi^\dagger, \Sigma_1 \frac{\partial \phi}{\partial x/x} \rangle = \sum_{n \in \alpha} \sum_{t \in n} \frac{\partial w_n}{\partial x/x} \cdot \ell_t \Sigma_1 \cdot \frac{1}{w_n} \sum_{k \in d_n^{(\gamma)}} w_k
\]

Effect of perturbation on the adjoint flux:

\[
\langle \frac{\partial \phi^\dagger}{\partial x/x}, \Sigma_1 \phi \rangle = \sum_{n \in \alpha} \sum_{t \in n} w_n \cdot \ell_t \Sigma_1 \left(\frac{1}{w_n} \sum_{k \in d_n^{(\gamma)}} \frac{\partial w_k}{\partial x/x} - \frac{1}{w_n^2} \frac{\partial w_n}{\partial x/x} \sum_{k \in d_n^{(\gamma)}} w_k \right)
\]

Sum of indirect terms (rewritten as function of neutrons in generation $\alpha + \gamma$):

\[
\langle \phi^\dagger, \Sigma_1 \frac{\partial \phi}{\partial x/x} \rangle + \langle \frac{\partial \phi^\dagger}{\partial x/x}, \Sigma_1 \phi \rangle = \sum_{k \in (\alpha+\gamma)} \left[w_k \left(\sum_{t \in (-\gamma)_k} \ell_t \Sigma_1 \right) \frac{\partial w_k}{w_k} \right]
\]
Example: effective prompt lifetime

\[
R = \frac{\left\langle \phi^\dagger, \frac{1}{v} \phi \right\rangle}{\left\langle \phi^\dagger, \frac{1}{k_{\text{eff}}} \chi_t \Xi_t \Sigma_f \phi \right\rangle}
\]

Simple IFP estimator for the numerator:

\[
\left\langle \phi^\dagger, \frac{1}{v} \phi \right\rangle = \frac{1}{q'} \sum_{k \in (\alpha+\gamma)} w_k \cdot (-\gamma) l_k
\]

Numerator terms of the perturbation:

\[
\frac{\left\langle \phi^\dagger, \frac{1}{v} \frac{\partial \phi}{\partial x/x} \right\rangle}{\left\langle \phi^\dagger, \frac{1}{v} \phi \right\rangle} + \frac{\left\langle \frac{\partial \phi^\dagger}{\partial x/x}, \frac{1}{v} \phi \right\rangle}{\left\langle \phi^\dagger, \frac{1}{v} \phi \right\rangle} = \sum_{k \in (\alpha+\gamma)} w_k \left[\sum_{g=(\alpha-\lambda)} \left((n,g)^{ACC_x} - (n,g)^{REJ_x} \right) \right] (-\gamma) l_k
\]
Bilinear ratios (method)

Denominator terms:

\[
\frac{\langle \phi^\dagger, F \frac{\partial \phi}{\partial x/x} \rangle}{\langle \phi^\dagger, F \phi \rangle} + \frac{\langle \phi^\dagger, \frac{\partial F}{\partial x/x} \phi \rangle}{\langle \phi^\dagger, F \phi \rangle} + \frac{\langle \frac{\partial \phi^\dagger}{\partial x/x}, F \phi \rangle}{\langle \phi^\dagger, F \phi \rangle} = \sum_{k \in (\alpha+\gamma)} w_k \left[\frac{\sum_{g=(\alpha-\lambda)} (\alpha+\gamma) \left((n,g) ACC - (n,g) REJ \right)}{\sum_{g=(\alpha-\lambda)}} \right]
\]

We finally obtain the sensitivity coefficient for \(\ell_{\text{eff}} \):

\[
S_{x \ell_{\text{eff}}} = \frac{E \left[\sum_{\text{history}} (ACC - REJ) \right] - E \left[\sum \left(ACC - REJ \right) \right]}{E \left[(-\gamma) I \right]} = \frac{\text{COV} \left[(-\gamma) I, \sum_{\text{history}} (ACC - REJ) \right]}{E \left[(-\gamma) I \right]}
\]
Bilinear ratios (method)

Everything is much more simple...

If the quantity R can be estimated as the ratio of two generic Monte Carlo responses

$$R = \frac{E[e_1]}{E[e_2]}$$

the sensitivity coefficient of R with respect to x can be obtained as:

$$S_x^R = \frac{COV\left[e_1, \sum_{\text{history}} (ACC_x - REJ_x)\right]}{E[e_1]} - \frac{COV\left[e_2, \sum_{\text{history}} (ACC_x - REJ_x)\right]}{E[e_2]}$$
Bilinear ratios (results)

Jezebel - Leff - Pu-239 - elastic scattering
Effective prompt lifetime sensitivity - 4-8 generations - ENDF/B-VII

Sensitivity per lethargy unit

- Extended SERPENT-2
- TSUNAMI-1D (EGPT)

Manuele Aufiero - LPSC/CNRS Grenoble

Perturbation/sensitivity calculations with Serpent
Bilinear ratios (results)

Jezebel - Leff - Pu-239 - disappearance
Effective prompt lifetime sensitivity - 4-8 generations - ENDF/B-VII

![Graph showing bilinear ratios and sensitivity per lethargy unit against energy (eV)].

-2×10^{-3}
-4×10^{-3}
-6×10^{-3}
-8×10^{-3}
-1×10^{-2}

Energy (eV)

0

-2×10^{-3}
-4×10^{-3}
-6×10^{-3}
-8×10^{-3}
-1×10^{-2}

Sensitivity per lethargy unit

Extended SERPENT-2
TSUNAMI-1D (EGPT)
Bilinear ratios (results)

Popsy (Flattop) - Leff - Pu-239 - fission
Effective prompt lifetime sensitivity - 8-16 generations - ENDF/B-VII
Bilinear ratios (results)

Popsy (Flattop) - Leff - U-238 - inelastic scattering
Effective prompt lifetime sensitivity - 8-16 generations - ENDF/B-VII
Bilinear ratios (results)

UAM TMI-1 PWR cell - α_{coolant} - U-238 - disappearance

coolant void reactivity coeff. sensitivity - 4 generations - ENDF/B-VII

Sensitivity per lethargy unit

Energy (eV)

Extended SERPENT-2
TSUNAMI-1D
Difference (S-T)
Bilinear ratios (results)

UAM TMI-1 PWR cell - α_{coolant} - U-235 - nubar total
coolant void reactivity coeff. sensitivity - 4 generations - ENDF/B-VII

Energy (eV)

Sensitivity per lethargy unit

Extended SERPENT-2
TSUNAMI-1D
Difference (S-T)
The method can be extended to scattering distribution sensitivities:

At each scattering event, two pairs of outgoing energy/scattering angle are sampled.

One is accepted as real event, the other is rejected as virtual.

Implicit and constraining of the sensitivity profiles adopting a **continuous method** (in energy and angle).
Scattering distributions

The un constrained k_{eff} sensitivity to scattering distributions can be obtained adopting Iterated Fission Probability methods as:

$$S^k_{\text{eff}}(\mu, E) = E \left[\sum \left((-\gamma) ACC_{\text{f}}(\mu|E) \right) \right]$$

In practice, bin-integrated quantities are of interest:

$$S^k_{\text{f}}(\mu, E) = \int_{\mu}^{\mu+1} \int_{E}^{E+1} S^k_{\text{f}}(\mu, E) \, d\mu \, dE$$

The constraint in k_{eff} sensitivities to scattering functions can be introduced in a discretized form, starting from the bin-integrated unconstrained sensitivity coefficients ($S^k_{\text{f}, j, i}$), as done in deterministic codes.
Scattering distributions

The normalization constraint can be introduced as a continuous (non discretized) relationship:

$$\hat{S}_{f^x}^{k_{\text{eff}}} (\mu, E) = S_{f^x}^{k_{\text{eff}}} (\mu, E) - f^x(\mu|E) \int_{-1}^{1} S_{f^x}^{k_{\text{eff}}} (\mu^*, E) \, d\mu^*$$

In the present collision-history approach, the second term of the RHS of the Eq. above can be estimated as the density of rejected scattering events with $$(\mu|E)$$:

$$f(\mu|E) \int_{-1}^{1} S_{f^x}^{k_{\text{eff}}} (\mu^*, E) \, d\mu^* = E \left[\sum \left((-\gamma) \, \text{REJ}_{f(\mu|E)} \right) \right]$$

A continuous (in energy and angle) Monte Carlo estimator for the constrained sensitivity to scattering distribution is available:

$$\hat{S}_{f^x}^{k_{\text{eff}}} (\mu, E) = E \left[\sum \left((-\gamma) \, \text{ACC}_{f^x(\mu|E)} - (-\gamma) \, \text{REJ}_{f^x(\mu|E)} \right) \right]$$
Scattering distributions

Jezebel - Pu-239 - elastic scattering

Sensitivity to scattering cosine in CoM frame (constrained) - 6 generations - ENDF/B-VII

![Graph showing sensitivity to scattering cosine in CoM frame for Jezebel - Pu-239 - elastic scattering with sensitivity per cosine width on the y-axis and scattering cosine on the x-axis.]

- Effective prompt lifetime -- Extended SERPENT-2
- Keff -- Extended SERPENT-2
- Keff -- MCNP
Scattering distributions

Jezebel, k_{eff} sensitivity to elastic scattering distribution
Scattering distributions

Jezebel, ℓ_{eff} sensitivity to elastic scattering distribution
Scattering distributions

Jezebel, F_{28}/F_{25} sensitivity to elastic scattering distribution
A collision history-based approach to GPT calculations
Reaction rate ratios
Adjoint-weighted quantities (bilinear ratios)

Legendre moments

Scattering distributions are often expressed as an expansion of Legendre polynomials:

\[f^x(\mu|E) \approx \sum_{n=0}^{\infty} \frac{2n+1}{2} P_n(\mu) f^x_n(E) \]

The sensitivity of \(R \) to the \(n^{th} \) Legendre moment of a given scattering distribution can be defined as follows:

\[S_{f_n^x}^R \equiv \frac{dR}{df_n^x / f_n^x} \]

\[S_{f_n^x}^R(E) = \int_{-1}^{1} \frac{dR}{R} \cdot \frac{df^x(\mu|E)}{f^x(\mu|E)} \cdot \frac{df^x_n(E)}{df^x_n(E)} \cdot f^x_n(E) \cdot \frac{1}{f^x(\mu|E)} \cdot d\mu \]

\[\frac{2n+1}{2} P_n(\mu) \]
Legendre moments

All the terms in $G_{f_n^x}$ can be calculated on-the-fly:

$$G_{f_n^x} = \frac{2n+1}{2} P_n(\mu) \cdot f_n^x(E) \cdot 1/f^x(\mu|E)$$

Continuous Monte Carlo estimator for the sensitivity to the Legendre moments of the scattering distributions:

$$S_{f_n^x}^R = \frac{\text{COV} \left[e_1 , \sum \text{history } G_{f_n^x} \right]}{E[e_1]} - \frac{\text{COV} \left[e_2 , \sum \text{history } G_{f_n^x} \right]}{E[e_2]}$$
Scattering distributions

Jezebel - Keff - Pu-239 - elastic scattering - P1

Keff sensitivity - 3 generations - ENDF/B-VII

Incident energy (MeV)

Sensitivity (0.1 MeV energy bins)

Extended SERPENT-2 (-0.1007)
MCNP (-0.0896)
Kiedrowski, B. C., 2013. (LA-UR-13-27498)

Keff sensitivity - 3 generations - ENDF/B-VII

Perturbation/sensitivity calculations with Serpent
Scattering distributions

Jezebel - k_{eff} - Pu-239 - elastic scattering

Effective multiplication factor sensitivity - 3 generations - ENDF/B-VII

- Sensitivity per lethargy unit
- Scattering XS (f_0) -- Ext. Serpent
- 1st Legendre moment -- Ext. Serpent
- Scatt. XS (G. Palmiotti)
- 1st Leg. moment (G. Palmiotti)
- MCNP 1st Leg. moment
- Kiedrowski, B. C., (LA-UR-13-27498)
Scattering distributions

Jezebel - l_{eff} - Pu-239 - elastic scattering

Effective prompt lifetime sensitivity - 2-4 generations - ENDF/B-VII
Scattering distributions

Jezebel - F28/F25 - Pu-239 - elastic scattering

Central F28/F25 ratio sensitivity - 6 generations - ENDF/B-VII
Latent generations convergence
ERANOS results from Sandro Pelloni @PSI

Flattop (Pu239 configuration) - U238 Inelastic scattering
Extended Serpent2 (LPSC version) - adj-weighted sensitivity - 10 latent generations
Serpent results for sensitivities to scattering distributions have not been fully tested/verified yet!
Acknowledgement

- Serpent developer team @VTT
- Sandro Pelloni & Mathieu Hursin
 @Paul Scherrer Institut
THANK YOU FOR THE ATTENTION

QUESTIONS? SUGGESTIONS? NEW IDEAS?