Proposed General Purpose Data Containers

Presented at WPEC 38
21 May 2015
Philosophy since last meeting

- Reduce containers to a more basic set
- In part, reduce the number of options available
- This makes programming simpler
- For example, XYs container no longer has mixed and component representations
Classifying containers

• Basics
 – text, values
 – array

• Axis/Axes
 – axis and axes

• Functionals – f(x), f(x,y), f(x,y,z), ...
 – XYs, series
 – multiD_XYs, gridded
 – Regions

• Uncertainty
 – uncertainty and uncertainties

• General
 – table
Standard attributes

• Standard attributes for many elements
 – index [Integer >=0] used for sorting
 – label [string] meaning defined by community
 – style [string] meaning defined by community

• Standard function attributes
 – value [see valueType] meaning defined by parent element
 – valueType [one of the supported types]
 – some elements may also have
 • interpolation
 • dimension

• Function elements
 – axes
text xData element

- Parent xData elements: None
- Child elements: None
- Attributes:
 - Common attributes
 - encoding: [String][default="ascii"]
 - "utf8", "ascii", etc.
 - markup: [String][default="none"]
 - "xml", "xhtml", "latex", etc.
 - length: [Integer32][optional]
- Body: any characters allowed by type and markup attributes.

\[\alpha \times x^{3/2}\]
values xData element

• Parent xData elements: ‘axis’, ‘XYs’, ‘series’, ‘array’?
• Child elements: None
• Attributes:
 – Common attributes
 – valueType: [String][default=“Float64”]
 – sep: [Char][default=“ ”]
 – length: [Integer32][optional] total number of values present
 – start: [Integer32][default=“0”] only values between [start, start+length) are listed, all other values are zero which have been trimmed.
 – size: [Integer32][default=length] total number of values including trimmed zeros. Required if zeros have been trimmed.
• Body: list of ‘type’ entities separated by ‘sep’ and white spaces.
array xData element

- Parent xData elements: ‘gridded’

- Child elements: determined by the compression attribute

- Attributes:
 - Common attributes
 - shape: [List of Integer32s][required]
 - compression: [String][default=“full”] “none”, “diagonal”, “flattened” or “embedded”.
 - triangular: [String][default=‘none’] “upper”, “lower”
 - What about ‘anti’.
 - permutation: [String][default=“+”] one of “+” or “-”
 - storageOrder: [String][default=‘row-major’] “row-major” and “column-major”
 - offset: [List of Integer32s][default=‘0’]

- Body: list of child elements and white spaces
Child elements for each compression type

- **compression=“none”** child elements:
 - a single “values” xData element

- **compression=“diagonal”** child elements:
 - a “values” xData element containing the startingIndices. Data type is an integer and label is “startingIndices”
 - This is optional. Default starting indices are all 0.
 - a “values” xData element containing the values

- **compression=“flattened”** child elements:
 - a “values” xData element with label=“flatIndices” [required]. Data type is integer.
 - “values” xData element with label=“numberOfValues” [required]. Data type is integer.
 - “values” xData element containing the values [required]

- **compression=“embedded”** child elements:
 - list of “array” xData elements. Each sub-array must have a ‘startingIndices’ attribute to indicate where it is embedded in the parent array
axes xData element

- Child elements: ‘axis’
 - There must be dimension + 1 axis elements where dimension is the dimension of the parent element.
 - If axes is linked, only axis elements with different values are needed; other axis attributes are derived from link.

- Attributes:
 - Common attributes

- Body: only listed child elements and white spaces are allowed
axis xData element

- Parent element: ‘axes’
- Child elements: ‘values’
 - The ‘values’ element only appears on axis elements inside a ‘gridded’ container
- Attributes:
 - Common attributes
 - ‘index’: [Integer32][required] value is ‘0’ for dependent axis and for the independent axis the subscript value for each x_i in $x_0(x_n, x_{n-1}, \ldots, x_2, x_1)$
 - ‘label’: [UTF-8][required]
 - ‘style’: [String][optional] If present, a ‘values’ sub-element is required to specify the grid. Values are “points”, “boundaries” or “parameters”
 - ‘unit’: [Unit][default=“”] value is the unit for this axis’ data
 - interpolation: [UTF8Text, contingent]
 - interpolationQualifier: [UTF8Text, contingent]
 - ‘link’: [?][optional]
 - If axis is linked, only ‘axis’ attributes with different values are needed; other values are derived from link. Same for uncertainty sub-element.
- Body: only listed child elements and white spaces are allowed
XYs xData element

• Parent xData elements: ‘regions’, ‘multiD_XYs’, ‘uncertainty’
 – The ‘regions’ and ‘multiD_XYs’ must be of dimension 2.

• Child elements: ‘axes’, ‘values’, ‘uncertainties’

• Attributes:
 – Common attributes
 – Common-2 attributes
 – interpolation: [String][default=“lin,lin”]

• Body: list of child elements and white spaces.

• Restrictions: No discontinuity allowed in values

What about Precision and significant digits?
series xData element

• Parent xData elements: ‘regions’, ‘multiD_XYs’, ‘uncertainties’
 – The ‘regions’ and ‘multiD_XYs’ must be of dimension 2.

• Child elements: ‘axes’, ‘values’, ‘uncertainties’

• Attributes:
 – Common attributes
 – Common-2 attributes
 – function: [String][required]
 • Pre-defined types: “Legendre” and “polynomial”
 – lowerIndex: [Integer32][default=“0”]
 – domainMinimum: [Determined by value’s ‘valueType’][depends on function]
 – domainMaximum: [Determined by value’s ‘valueType’][depends on function]

• Body: list of child elements and white spaces.
multiD_XYs xData element

• Parent xData elements: any multiD_XYs container, ‘regions’, ‘uncertainties’
 – The parent multiD_XYs shall have dimension one higher than self.
 – The parent region shall have the same dimension as self.

• Child elements: ‘axes’, ‘uncertainties’, any (dimension-1)-D functional xData container

• Attributes:
 – Common attributes
 – Common-2 attributes
 – dimension, interpolation, interpolationQualifier

• Body: list of child elements and white spaces.
regions xData element

- Parent xData elements: ‘uncertainties’, any (dimension+1) functional xData container

- Child elements: ‘axes’, ‘uncertainties’, any (dimension-1) functional xData container

- Attributes:
 - Common attributes
 - Common-2 attributes
 - dimension

- Body: list of child elements and white spaces.
gridded xData element

• Parent xData elements: ‘uncertainties’

• Child elements:
 – ‘axes’ (whose independent ‘axis’ elements each has a ‘grid’)
 – ‘array’
 – ‘uncertainties’

• Attributes:
 – Common attributes
 – Common-2 attributes

• Body: list of child elements and white spaces.
uncertainty xData element

- Parent element: ‘uncertainties’

- Child elements: one functional xData element of the proper dimension

- Attributes:
 - Common attributes
 - ‘relation’: [String][default=“absolute”] shall be “absolute”, “relative” or “percent”.
 - ‘type’: [String][default=“single”] may be “variance”, “variance-”, “variance+”, “covariance”, “confidence-interval”, etc.
 - ‘pdf’: [String][default=“normal”] “normal”, “log-normal”, etc.

- Body: only listed child elements and white spaces are allowed.
uncertainties xData element

• Parent element: any functional xData element

• Child elements: zero or more ‘uncertainty’ elements

• Attributes:
 – Common attributes

• Body: only listed child elements and white spaces are allowed
Comment on uncertainties/uncertainty containers

• Allows a cross section’s variance/covariance data to reside inside the cross section’s container
 – That is, not separated as they are in ENDF

• For regions and multi-dimensional containers, variance/covariance can be at various levels
 – 2d container
 • 1d container with uncertainty data
 • 1d container with uncertainty data
 – 2d container
 • 1d container
 • uncertainty data – 2d uncertainty
Uncertainty example 1

```xml
<uncertainties>
  <uncertainty relation="relative">
    <xys>
      <values> 0.0 0.1 3.0 0.15</values>
    </Xys>
  </uncertainty>
</uncertainties>
```
Uncertainty example 2

<uncertainties>
 <uncertainty type="variance+" pdf="log-normal">
 <XYs><values> 0.1 0.1 0.4 0.2 1 0.25 1.5 0.25 2.1 0.1</values>
 </XYs></uncertainty>
 <uncertainty type="variance-" pdf="normal">
 <XYs><values> 0.1 0.6 0.4 0.4 2.1 0.1</values>
 </XYs></uncertainty>
</uncertainties>
• Parent xData elements: None
• Child elements:
• Still TBD
 – Caleb and I are working to simplify this from our previous specifications
 – Ignore it in the documentations
Extras

• style: a simple label to designate different categories of data: For example:
 – temperature
 – different groups

• Links
<styles>
 <evaluated name="eval" temperature="0 K" date="2005-12-25"/>
 <linearize name="L1" source="eval"/>
 <heat name="T1">
 <grouped name="G100F1"></grouped>
 </heat>
</styles>

<crossSection>
 <regions dimension="1" style="eval">
 <axes>
 <axis index="1" label="energy_in" unit="eV"/>
 <axis index="0" label="crossSection" unit="b"/>
 </axes>
 <XYs index="0">
 <values length="2750">1e-5 3.842443 1.0931e-5 3.842759 ...</values>
 </XYs>
 <XYs style="L1">...<XYs>
 <XYs style="T1">...<XYs>
 <values style="G100F1"> ...</values>
 <values style="G100F2"> ...</values>
 <values style="G1000F1"> ...</values>
 <values style="G1000F2"> ...</values>
 </regions>
</crossSection>