D-diagrams and Nuclear Data

V.M.Shmakov and E.I.Cherepanova

RUSSIAN FEDERAL NUCLEAR CENTER
VNIITF

Snezhinsk 2013

Introduction

30 years ago Vyacheslav Ogibin from VNIITF suggested using D-diagrams for organization and description of spectral nuclear data for Monte-Carlo programs.

D-diagrams use only $\mathbf{4}$ nonstructural and $\mathbf{3}$ structural elements.

D-diagrams were very convenient to create complex codes by many people of different qualifications.

The experience showed that it was the good choice as Ddiagram are still successfully used.

Reaction Data

Cross Section $\quad \sigma(\mathrm{E} 0)$

Energy reaction - Q
Particle type - $n, \gamma, p, e^{-} \ldots$
Yield $-\mathbf{v}, \mathbf{n}_{\boldsymbol{\gamma}}, \mathbf{n}_{\mathrm{p}}, \mathbf{n}_{\mathrm{e} \rightarrow}, \ldots$
Energy out particle - E
$\operatorname{Cos}(\theta)$
Time

Total Data

The non-structured types

Integer

Real

Alphanumeric word

Alphanumeric string (cart)

The structured types

Choice (Branch)

Direct Product

Sequence

Using D-diagrams

-In documentation for the format description of text and binary libraries
-For visually description of date structure and their representation
-Using the following additional symbols: J (Jump), N (Number), O (Omit) and Pac (Packing) show the data representation on cards (for example: Hollerith with 80 position of ASCII).
-Using the following additional symbol for binary data: V
(Address) show the data representation in an array I and R
(IR-equivalent).

Data representation on ASCII cards

Additional symbols

- \mathbf{N} - Number of repetitions or the branch Number
- J - Jump on the following card or a line where values of the D-diagram will be placed.
- O-Omitting the current value of data.
- P-Packing two values on one field which consists of 12 positions each of which consists of six positions.

Some combinations:

- NJ - transmition to a new line after the number repetition placemen.
- JNJ - After jumping place N and jump to a new line.

Angle Distribution Data

Particle Production Multiplicity

INT is the interpolation scheme identification number used in the range
$=1 \mathrm{y}$ is constant in x (constant, histogram)
$=2 \mathrm{y}$ is linear in x (linear-linear)
$=3 y$ is linear in $\ln (x)$ (linear-log)
$=4 \ln (y)$ is linear in x (log-linear)
$=5 \ln (y)$ is linear in $\ln (x)$ (log-log)
$=7$ equal(y) is linear in x (equal-linear)
v is independent of E0 and has constant value;
number of $v(E 0)$ particles is tabulated with low of interpolation, as a rule, ИНТ=2;
σv - gamma production is set depending on energy E0

Time Distribution Data

Integral characteristic

$$
\begin{aligned}
K E R M A L\left(E_{0}\right) & =\sum_{\substack{i=1 \\
i \neq \text { fiss }}}^{N} \frac{\sigma_{i}\left(E_{0}\right)}{\sigma_{t o t}\left(E_{0}\right)}\left[E_{0}+Q_{i}-\sum_{k}\left(v_{i}^{(k)}\left(E_{0}\right) \cdot \bar{E}_{i}^{(k)}\left(E_{0}\right)\right)\right]+\frac{\sigma_{\text {fiss }}\left(E_{0}\right)}{\sigma_{\text {tot }}\left(E_{0}\right)}\left(Q_{\text {fiss }}+\sum_{m} v_{\text {fiss }, \gamma}^{(m)} \cdot \bar{E}_{\text {fiss }, \gamma}^{(m)}\left(E_{0}\right)\right) \\
K E R M A\left(E_{0}\right) & =\sum_{\substack{i=1 \\
i \neq \text { fiss }}}^{N} \frac{\sigma_{i}\left(E_{0}\right)}{\sigma_{t o t}\left(E_{0}\right)}\left[E_{0}+Q_{i}-\sum_{k}\left(v_{i}^{(k)}\left(E_{0}\right) \cdot \bar{E}_{i}^{(k)}\right)-\sum_{m}\left(v_{i, \gamma}^{(m)}\left(E_{0}\right) \cdot \bar{E}_{i, \gamma}^{(m)}\right)\right]+ \\
& +Q_{\text {fiss }} \frac{\sigma_{\text {fiss }}\left(E_{0}\right)}{\sigma_{\text {tot }}\left(E_{0}\right)}-\sum_{m}\left(v_{N o n, \gamma}^{(m)}\left(E_{0}\right) \cdot \bar{E}_{N o n, \gamma}^{(m)} \frac{\sigma_{N o n}\left(E_{0}\right)}{\sigma_{t o t}\left(E_{0}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \mathbf{N}\left(\mathbf{E}_{0}\right)=\sum_{\mathbf{i}}^{\text {पחP }} \sum_{\mathbf{k}}\left(v_{\mathbf{n}}^{\mathrm{i}}\left(\mathbf{E}_{0}\right)-1\right) \frac{\sigma_{\mathbf{i}}\left(\mathbf{E}_{0}\right)}{\sigma_{\mathrm{tot}}\left(\mathbf{E}_{0}\right)} \\
& \Delta G\left(E_{0}\right)=\sum_{i}^{N} \sum_{m} v_{\gamma}^{i} \frac{\sigma_{i}\left(E_{0}\right)}{\sigma_{\text {tot }}\left(E_{0}\right)}+\sum_{m} \gamma_{\text {Non, }}^{(m)}\left(E_{0}\right) \frac{\sigma_{\text {Non }}\left(E_{0}\right)}{\sigma_{\text {tot }}\left(E_{0}\right)}
\end{aligned}
$$

