

### Connection between the Reference Parameter Input Library RIPL, GND and nuclear reaction evaluations

Arjan Koning

NRG Petten, the Netherlands WPEC SG38 Meeting, OECD/NEA Data Bank May 21-22 2013, Issy-les-Moulineaux

## **RIPL: The result of 3 IAEA CRP's**



Available online at www.sciencedirect.com



Nuclear Data Sheets 110 (2009) 3107-3214

Nuclear Data Sheets

NRG

www.elsevier.com/locate/nds

#### RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

R. Capote,<sup>1\*</sup> M. Herman,<sup>1,2</sup> P. Obložinský,<sup>1,2</sup> P.G. Young,<sup>3</sup> S. Goriely,<sup>4</sup> T. Belgya,<sup>5</sup> A.V. Ignatyuk,<sup>6</sup> A.J. Koning,<sup>7</sup> S. Hilaire,<sup>8</sup> V.A. Plujko,<sup>9</sup> M. Avrigeanu,<sup>10</sup> O. Bersillon,<sup>8</sup> M.B. Chadwick,<sup>3</sup> T. Fukahori,<sup>11</sup> Zhigang Ge,<sup>12</sup> Yinlu Han,<sup>12</sup> S. Kailas,<sup>13</sup> J. Kopecky,<sup>14</sup> V.M. Maslov,<sup>15</sup> G. Reffo,<sup>16</sup> M. Sin,<sup>17</sup> E.Sh. Soukhovitskii,<sup>15</sup> P. Talou<sup>3</sup>

# **RIPL segments**

- 1. Masses
- 2. Discrete levels
- 3. Neutron resonances
- 4. Optical model
- 5. Level densities
- 6. Gamma-ray strength functions
- 7. Fission
- All of these segments are important for nuclear model codes
- Some of these segments are important for a particle database.
- Recommendation: "force" link of particle database with nuclear reaction evaluation
- Recommendation: try to work with defaults that can be overruled
- Warning: Unification of the RIPL format has been recommended before by a RIPL-participant. Maybe the time is right now!

NRG

#### Masses



- Everyone (I think) agrees we should adopt experimental masses from the Atomic Mass Evaluation, when available
- People, especially astrophysicists, disagree on theoretical masses (FRDM, HFB models, Duflo-Zuker formula).
- RIPL also stores relative isotopic abundances = BNL Nuclear Wallet Cards.
- Link with nuclear reaction evaluations (NRE):
  - Agree on the (RIPL) default: if no mass is given in the NRE, link to the particle database
  - Allow to overrule default mass choice in NRE.
  - Should Q-values remain implicit (are completely determined by mass choice) or be explicit in an NRE?
  - How to deal with "old" masses from ENDF-B, JEFF, JENDL, etc.?
- Any new evaluation made with (at least) TALYS or EMPIRE, uses consistent RIPL values for masses

## **Discrete levels**



- There is one generally adopted source for discrete level information, ENSDF, and in RIPL this is translated into a discrete level database.
- Unfortunately, less well-defined, or well-agreed, than masses:
  - Unknown energies
  - Unknown spins and parities
  - Unknown branching ratios
  - ~10 units away from stability line: no info at all
  - Do we get halflives from here or from the Decay Data File?
- Filling these omissions for nuclear reaction evaluations is subjective, e.g. TALYS uses HFB level densities to fill it all.
- Existing nuclear reaction evaluations often disagree on the level energy and number (!) Can/should we impose the RIPL default on this?

### **Neutron resonance parameters**



- Direct connection with current MF2, also for the **average** resonance parameters.
- Evaluators will disagree more than for masses and discrete levels
- Outside RIPL: bring The Atlas of Neutron Resonances also under the GND umbrella.

## **Optical model parameters**



- All OMP parameterizations must first be used in nuclear model calculations, so no direct link with format issues of nuclear reaction evaluations.
- Bringing OMP parameters under GND umbrella may be difficult since special software is required to retrieve the parameters.

## Level density parameters



- All these parameterizations must first be used in nuclear model calculations, so no direct link with format issues of nuclear reaction evaluations.
- All tables can be brought under GND umbrella, either for level density parameters or tabulated level densities.

## **Gamma-ray strength functions**



- All these parameterizations must first be used in nuclear model calculations, so no direct link with format issues of nuclear reaction evaluations.
- All tables can be brought under GND umbrella, either for gamma-ray parameters or tabulated gamma-ray strength functions.

## **Fission parameters**



- All these parameterizations must first be used in nuclear model calculations, so no direct link with format issues of nuclear reaction evaluations.
- All tables can be brought under GND umbrella, either for fission parameters or tabulated fission level densities, etc.

# Conclusions



- Try to bring large nuclear-structure related databases under GND umbrella: RIPL, Atlas, Radioactive Decay Data file, NUBASE etc.
- This will allow users to choose from a variety of sources without (?) caring about read formats.
- Question for the link to nuclear reaction evaluations: should we establish defaults for (almost) everything to minimize errors?

( a bit like a TALYS input file.....)