
Designing an API for 
reading/writing nuclear data 

Wim Haeck, wim.haeck@irsn.fr 

 



Outline 
 Introduction 

 Why an API? 

 Our point of view 

 Designing an object oriented API 

 Past experience 

 Design choices 

 Example 

 Organising the work 

 Conclusions 



An API because … 

▌Because we don’t want to reinvent the wheel 

▌Because we need to be able to construct the new file 

▌Because we need to be able to use the new file 
 First for testing and visualization 

 Then for general use in our applications 



Our point of view 

▌ IRSN is an end user 
 We use basic evaluations to generate our own libraries 

 We use data libraries from the distribution of a calculation code 

▌Two large C++ projects with direct nuclear data needs 
 VESTA: depletion calculations 

 GAIA: nuclear data processing and formatting 

 Going into the conceptual design phase 

 PhD on resonance reconstruction and Doppler broadening 

▌Our main interest is the object oriented API in C++ and Java 
 Implementation in both languages can share a common design 

 



Past experience: an ENDF parser 

▌We use our own ENDF parser in our current software 
 Basic building blocks: ENDFINT, ENDFDOUBLE, ENDFTAB1, ENDFLIST, etc. 

 Construct higher level classes: ENDFMATMF3MT, ENDFMATMF3, ENDFMAT 

▌Learn from past experience 
 Accessing data is inherently linked to the ENDF data format 

 Not compatible with a new data structure 

 File format and data representation should not be associated 

 Primitive data types are used for input and output 

 Makes it difficult for new people to use the parser 

 Difficult to go back on a design choice 

 Programming is 95% inspiration and 5% transpiration 

 Extremely work intensive 

 Documentation and testing take as much time as implementation 

 

 



Design choices to be made 

▌Low level or high level? 
 Use only low level or primitive data types as input and output 

 For example: use “double” and not the concept of an energy value 

 Can be integrated easily into other software (both existing and new) 

 Use high level concepts and abstraction 

 Includes more of the physics behind the data 

 Independent of the physical file format 

 Goes beyond the scope of a simple API but can be more robust 

▌Use interfaces? 
 Multiple representation types for the same data 

 For example: secondary particle energy and angular distributions 

 An abstract interface allows for multiple implementations 

 Use a link to physical files or store the data in memory 

 



Design choices to be made 

▌Where does the API end and where does processing begin? 
 For example: linearisation of data (e.g. for plotting) 

 Which linearisation scheme? 

 What if a user wants to use another scheme? 

 If we add simple operations like this why not add more complex ones? 

 Doppler broadening 

 Multi-group treatment 

 



Design example 

▌The high level nuclear data object can be used to represent 
data in several representation types 

 For example: an angular distribution can be Legendre polynomials, an 

analytical function or a tabulated angular distribution 

 Metadata identifies the data representation type 

 The various components do not have functions to read/write to files 



Design example 

▌Reading and writing to a given format is a generic operation 
 The data object only knows “what” it is, not “where” it comes from 

 These operations can be implemented for any format (essentially a low-

level API for each format) 

 Compatibility testing can be done using the metadata 



Design example 

▌With this approach one can imagine the following operation 
 Implement readers and writers for each format type 

▌Compatibility issues are dealt with using the metadata 
 An unprocessed ENDF file cannot be transformed into an ACE file 



Design example 

▌Data manipulation and processing is also a generic operation 
 Manipulation of nuclear data consists of changing its representation type 

 For example: cross section reconstruction and linearisation 

 Before an operation can be performed, the module needs to test whether 

or not it can perform the operation 

 For example: cross section data needs to be linearised for a basic 

Doppler broadening operation 



Design example 

▌Putting it all together: a basic processing sequence 

 



Organising the work 

▌Constraints and requirements 
 The design of the new high level structure has to be rather advanced 

 It is easier to change a conceptual design document 

 Be clear on what we want from the beginning 

▌Milestones 
 Conceptual design of the API 

 Nuclear data object 

 Operations: reading, writing, modules and module types 

 Implement the nuclear data object and its components 

 Build the generic framework for reading and writing to file formats 

 Implement reading from a file 

 Implement writing to a file 

 Think about processing 

 



Conclusions 

▌First of all: this is my take on the topic 

▌General decisions are to be made 
 What to store and which representation types (structure) 

 Which formats to support (ENDF, new format, GND, etc.) 

 Where does the API end and where does processing begin? 

▌ IRSN is probably going into this direction with its software 
 Work is starting on a software requirements and conceptual design 

document for our GAIA software 

 This is compatible with some of the needs of the community 


