
Designing an API for 
reading/writing nuclear data 

Wim Haeck, wim.haeck@irsn.fr 

 



Outline 
 Introduction 

 Why an API? 

 Our point of view 

 Designing an object oriented API 

 Past experience 

 Design choices 

 Example 

 Organising the work 

 Conclusions 



An API because … 

▌Because we don’t want to reinvent the wheel 

▌Because we need to be able to construct the new file 

▌Because we need to be able to use the new file 
 First for testing and visualization 

 Then for general use in our applications 



Our point of view 

▌ IRSN is an end user 
 We use basic evaluations to generate our own libraries 

 We use data libraries from the distribution of a calculation code 

▌Two large C++ projects with direct nuclear data needs 
 VESTA: depletion calculations 

 GAIA: nuclear data processing and formatting 

 Going into the conceptual design phase 

 PhD on resonance reconstruction and Doppler broadening 

▌Our main interest is the object oriented API in C++ and Java 
 Implementation in both languages can share a common design 

 



Past experience: an ENDF parser 

▌We use our own ENDF parser in our current software 
 Basic building blocks: ENDFINT, ENDFDOUBLE, ENDFTAB1, ENDFLIST, etc. 

 Construct higher level classes: ENDFMATMF3MT, ENDFMATMF3, ENDFMAT 

▌Learn from past experience 
 Accessing data is inherently linked to the ENDF data format 

 Not compatible with a new data structure 

 File format and data representation should not be associated 

 Primitive data types are used for input and output 

 Makes it difficult for new people to use the parser 

 Difficult to go back on a design choice 

 Programming is 95% inspiration and 5% transpiration 

 Extremely work intensive 

 Documentation and testing take as much time as implementation 

 

 



Design choices to be made 

▌Low level or high level? 
 Use only low level or primitive data types as input and output 

 For example: use “double” and not the concept of an energy value 

 Can be integrated easily into other software (both existing and new) 

 Use high level concepts and abstraction 

 Includes more of the physics behind the data 

 Independent of the physical file format 

 Goes beyond the scope of a simple API but can be more robust 

▌Use interfaces? 
 Multiple representation types for the same data 

 For example: secondary particle energy and angular distributions 

 An abstract interface allows for multiple implementations 

 Use a link to physical files or store the data in memory 

 



Design choices to be made 

▌Where does the API end and where does processing begin? 
 For example: linearisation of data (e.g. for plotting) 

 Which linearisation scheme? 

 What if a user wants to use another scheme? 

 If we add simple operations like this why not add more complex ones? 

 Doppler broadening 

 Multi-group treatment 

 



Design example 

▌The high level nuclear data object can be used to represent 
data in several representation types 

 For example: an angular distribution can be Legendre polynomials, an 

analytical function or a tabulated angular distribution 

 Metadata identifies the data representation type 

 The various components do not have functions to read/write to files 



Design example 

▌Reading and writing to a given format is a generic operation 
 The data object only knows “what” it is, not “where” it comes from 

 These operations can be implemented for any format (essentially a low-

level API for each format) 

 Compatibility testing can be done using the metadata 



Design example 

▌With this approach one can imagine the following operation 
 Implement readers and writers for each format type 

▌Compatibility issues are dealt with using the metadata 
 An unprocessed ENDF file cannot be transformed into an ACE file 



Design example 

▌Data manipulation and processing is also a generic operation 
 Manipulation of nuclear data consists of changing its representation type 

 For example: cross section reconstruction and linearisation 

 Before an operation can be performed, the module needs to test whether 

or not it can perform the operation 

 For example: cross section data needs to be linearised for a basic 

Doppler broadening operation 



Design example 

▌Putting it all together: a basic processing sequence 

 



Organising the work 

▌Constraints and requirements 
 The design of the new high level structure has to be rather advanced 

 It is easier to change a conceptual design document 

 Be clear on what we want from the beginning 

▌Milestones 
 Conceptual design of the API 

 Nuclear data object 

 Operations: reading, writing, modules and module types 

 Implement the nuclear data object and its components 

 Build the generic framework for reading and writing to file formats 

 Implement reading from a file 

 Implement writing to a file 

 Think about processing 

 



Conclusions 

▌First of all: this is my take on the topic 

▌General decisions are to be made 
 What to store and which representation types (structure) 

 Which formats to support (ENDF, new format, GND, etc.) 

 Where does the API end and where does processing begin? 

▌ IRSN is probably going into this direction with its software 
 Work is starting on a software requirements and conceptual design 

document for our GAIA software 

 This is compatible with some of the needs of the community 


