Purpose of the new data structure: Dave's Perspective

David Brown

a passion for discovery

Office of Science

No, seriously

- A good format can determine the data structures used to interact with it
- These data structures are the components we use to create new things
- We are trying to create a development environment (tools + components) that we enjoy working with
- We will be working with these tools for a long time

Good tools == Happy developers

Brookhaven Science Associates

Our users determine the products we develop, so who are our users? Everybody...

Nuclear Science Community

- experiments
- + theory

Brookhaven Science Associates

Nuclear Data Community

- compilation
- evaluation
- dissemination
- archival

Application Community needs data:

- + complete
- organized
- traceable
- + readable BROCKHAVEN

What makes an enjoyable development environment for nuclear data applications?

Simple

- Structures "obvious" to nuclear physicist/engineer
- Don't want to have to read the manual to get something done
- Enable rapid development
- Enable good bookkeeping

Legacy support

- Don't like rewriting it all
- Need something to benchmark against

Unrestricted

- Programming language agnostic
- Unicode, localization support
- Don't box us in with poor design choices

- Open source
- No export controls
- Reusable
 - Write once, reuse often
 - Tested, trusted, discrete components
- Powerful
 - Smartphone to Supercomputer
 - Big iron, Big data
 - All nuclei in the Table of Isotopes and all the particles in the The Review of Particle Physics
 - From thermal neutrons to GeV's and beyond

What makes an enjoyable development environment for nuclear data applications?

L.U.R.F

Simple

- Structures "obvious" to nuclear physicist/engineer
- Don't want to have to read the manual to get something done
- Enable rapid development
- Enable good bookke

Legacy support

- Don't like rewriting it a
- Need something to benchmark against

Unrestricted

- Programming language agnostic
- Unicode, localization support
- Don't box us in with poor design choices

- Open source
- No export controls

Reusable

- Write once, reuse often
- Tested, trusted, discrete
 nents

phone to Supercomputer

- Big iron, Big data
- All nuclei in the Table of Isotopes and all the particles in the The Review of Particle Physics
- From thermal neutrons to GeV's and beyond

We as a community support many database products

Library	Root node	Main use
NSR	Publication	Bibliographic: archival
EXFOR	Publication	Experimental data : archival; reaction evaluation; basic science
ENSDF, XUNDL	Nucleus	Structure data : archival, reaction evaluation, basic science
RIPL	Parameter type	Input parameters: reaction evaluation
ENDF	Target+Projectile	Reaction data : particle transport, activation

The hierarchy of a library should be clear from the application domain, *without* relying on documentation

Brookhaven Science Associates

EXFOR format already is hierarchical; root node corresponds to 1 "publication"

Brookhaven Science Associates

Figure from V. Zerkin

Nevertheless, many "low-level" concepts can and should be reused

- Bibliographic references
- Particles:
 - Hadrons, elementary (transportable or not)
 - Nuclei
- Nuclear levels: energy, spin, parity, etc.
- Reaction designator
- Cross sections
 - Simple tables
 - Resonance parameters
 - Spectrum weighted
- Units
- xLinks

Brookhaven Science Associates

- History/versioning
- Documentation
- Common, low level, data types:
 - List
 - Vector
 - Matrix
 - Table
 - Legendre series
- Higher level constructs
 - Uncertainties
 - Covariances

But, we cannot guess everything that future users will want

 Today's models are tomorrow's collision kernels:

- FREYA, CoH being integrated into MCNP
- Enables correlations
- Needs RIPL....
- Cloud computing:
 - Assemble new apps from current databases, apps
 - Needs URLs to low level data...
 - Relational vs. hierarchical databases

• Uncertainty Quantification:

- Needs support for big data...
- Ensembles of libraries or covariances or both?

But what else will users want?

- New particles? neutrinos? muons? heavy-ions? hyperons?
- All Los Alamos ur databases to (gasp) be in sync with each other?
- Data mining?
- Mobile apps?

Optimizing developer happiness optimizes the quality of the products delivered to customers

10