
Domain specific
languages

David Brown

Wednesday, November 28, 12

Domain specific language vs.
explicit xml tagging

 Often encounter a kind of symbol that humans understand,
but machines don’t: 55Mn(n,2n)

 The logical structure of the symbol could be broken down into
xml tagged, machine readable, chunks
• Humans can no longer read them
• Logical structure unaltered (obviously)
• Kind of verbose

 Better is to define a limited set of mini-grammars
• Would have to encode grammar in processing code
• Cost commensurate with xml processing of tagged version
• Still human readable

 Use of mini-grammars should be limited in scope

2

Wednesday, November 28, 12

EXFOR “reaction math” is an example of
a well-designed domain specific
language

 Mathematical expressions
clear and use of parentheses
avoids questions about order
of operations:
• e.g. (((reaction string) +

(reaction string)) / (reaction
string))

 Was able to code grammar in
pyparsing in 1 hour (I am
slow). Implemented in x4i.

 “Isomer math” breaks this
simple grammar

3

Wednesday, November 28, 12

Current GND uses 3 very simple domain
specific languages

 Units: SI units are allowed in many places in GND

 Particle and Nucleus designators

 Reaction designators

4

These or improved versions of these
should be part of common subset of

formats for ENDF, EXFOR, ENSDF and RIPL

Wednesday, November 28, 12

Sample GND code showing units and
particle/nuclei designators

5

<particles>
 <particle name="gamma" genre="photon" transportable="true" mass="0 amu"/>
 <particle name="n1" genre="nucleus" transportable="true" mass="1.00866491574 amu"/>
 <particle name="Pu239" genre="nucleus" Jpi="1/2" mass="239.052172899498 amu">
 <level name="Pu239_e0" index="0" energy="0 eV"/>
 <level name="Pu239_e1" index="1" energy="7861 eV">
 <gamma energy="7861 eV" finalLevel="Pu239_e0" probability="1.0"/></level>
 <level name="Pu239_e2" index="2" energy="57276 eV"/>
 ...
 <level name="Pu239_e40" index="40" energy="3.909e6 eV"/>
 <level name="Pu239_c" index="c" energy="u:6.34e5 eV"/></particle>
 <particle name="Pu240" genre="nucleus" mass="240.053813545 amu"/></particles>

SI units used in many
places to enhance clarity
(incl. keV, MeV, etc.)

Elementary particles
spelled out, but nuclei have
simple SymAA or
SymAA_level designation

Wednesday, November 28, 12

GND reactions are also clear

 A GND reaction is generally defined by the list of outgoing
products:
• n1 + Pu239  n1 + Pu239  this is MT=2
• n1 + Pu239  n1 + Pu239_e1  MT=51

 An extra reaction id can also be added, so evaluators can be
much more specific:
• <reaction outputChannel=“n1 + Pu239 [shape elastic]”>…
• <reaction outputChannel=“n1 + Pu239 [compound elastic]”>…

6

Wednesday, November 28, 12

Advantages & Disadvantages
(from Wikipedia)

Some of the advantages:
■ Domain-specific languages allow solutions to be expressed in the idiom and at the level of abstraction of the problem domain. The idea is

domain experts themselves may understand, validate, modify, and often even develop domain-specific language programs. However, this is
seldom the case.

■ Self-documenting code.
■ Domain-specific languages enhance quality, productivity, reliability, maintainability, portability and reusability.
■ Domain-specific languages allow validation at the domain level. As long as the language constructs are safe any sentence written with them can

be considered safe.
 Some of the disadvantages:
■ Cost of learning a new language vs. its limited applicability
■ Cost of designing, implementing, and maintaining a domain-specific language as well as the tools required to develop with it
■ Finding, setting, and maintaining proper scope.
■ Difficulty of balancing trade-offs between domain-specificity and general-purpose programming language constructs.
■ Potential loss of processor efficiency compared with hand-coded software.
■ Proliferation of similar non-standard domain specific languages, i.e. a DSL used within insurance company A versus a DSL used within insurance

company B.
■ Non-technical domain experts can find it hard to write or modify DSL programs by themselves.
■ Increased difficulty of integrating the DSL with other components of the IT system (as compared to integrating with a general-purpose language).
■ Low supply of experts in a particular DSL tends to raise labor costs.
■ Harder to find code examples.

7

Wednesday, November 28, 12

http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Portability_(computer_science)
http://en.wikipedia.org/wiki/Portability_(computer_science)
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/Algorithmic_efficiency

