IRSNI INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Reflections on a new nuclear data format

Wim Haeck, wim.haeck@irsn.fr

Outline

- Nuclear data needs and applications at IRSN
- Experience with ENDF
- Reflections on a new nuclear data format

Public expert body in charge of the scientific assessment of nuclear and radiological risks

This expertise is based on research

Research: safety, radiation protection and ecosystems

Contribution to public policy and technical support

Services to industry and other organisations

- Dosimetry services, environmental measurements and risk analysis
- Education and training

Our nuclear data needs

IRSN is an end user

- We use basic evaluations to generate our own libraries
- We use data libraries from the distribution of a calculation code

Specific needs:

- Neutron and particle transport calculations
 - Cross sections
 - Energy-angle distributions for secondary particles
- Depletion calculations
 - Radioactive decay data
 - Reaction product multiplicity (including fission yield data)
 - Heating data
- Covariance data
- Auxiliary data: atomic mass data, etc.

Experience with ENDF as an end user

Advantages:

- A very modular format
 - A user can combine sections into his own file
- Stores both basic evaluations and processed data
 - A single format can be used for all aspects of the calculation

Issues:

- Fixed format records (legacy of the tape and card)
 - Limited number of significant digits
 - This is especially an issue when using ENDF as a data transfer format
- No publicly available API
 - Fortran format statements are given
 - Reinvent the wheel over and over again

Need for an API

Provide an official API in C++, Java, Fortran

- Common interface between ENDF and the new format
 - Existing ENDF files function as the new format
 - Be careful: backwards compatibility limits the new format's potential

A new format is nice but it will be a computer that uses it

- Prefer binary storage over ASCII \Rightarrow no "file" but a real database ?
- No need to store redundant total/partial data \Rightarrow API can sum partials
- A single unit for each physical quantity \Rightarrow API can do unit conversion
- No elemental data if isotopes are given \Rightarrow API can provide elemental data

New format can be a common entry point for calculations

- Interchangeable data libraries
- No more formatting, only processing to transform data

Basic structure requirements

A logical structure based on physics

- Nuclides should be the entry point (avoid elements)
- Incident particles and radioactive decay data are on the same level
- Reactions are the second level
 - Flexibility: avoid using identifiers except for particular reactions
- All data related to the reaction
 - Cross section data, multiplicity, angular and energy distributions
 - Resonance data is only present when it is not added to the cross sections

We only need to worry about what to put in the new format

- Internal formatting should not (really) be our concern
- A cross section is a continuous function of energy

Basic structure requirements

We need to establish what to store in the format

General data types

- Resonance and cross section data
- Secondary particle angular and energy distributions and multiplicity
- Thermal scattering data
- Covariance data
- Radioactive decay data and decay particle spectra

General conditions

Data should be defined over the entire energy range

Basic structure requirements

We should ask ourselves some questions

- Do we store the data as close as possible to reality?
- Lots of options or limited to the most generic data structures?
 - Analytical laws versus tabulated interpolatable data
 - Less options means less special cases for processing
- Do we want additional interpolation types?
 - Spline interpolation or higher order polynomial interpolation
- Do we want flexibility in the data structures?
 - Allow us to store multigroup data or continuous energy data
 - Interesting if we want to store processed application data
- Do we treat specialised data as a more general data type?
 - Fission yield data is essentially multiplicity data