Generation of fission yield covariances to correct discrepancies in the JEFF fission yield library

L. Fiorito, A. Stankovskiy, G. Van den Eynde
(SCK•CEN)
C.J. Diez, O. Cabellos
(OECD/NEA)
ENDF-6-format libraries (JEFF, ENDF/B, ...):

- Independent Fission Yields \([Y]\)
- Cumulative Fission Yields \([C]\)
 - Best estimate
 - Uncertainties

No covariance matrix
- ENDF-6-format libraries (JEFF, ENDF/B, ...):
 - Independent Fission Yields \([Y]\)
 - Cumulative Fission Yields \([C]\)
 - Best estimate
 - Uncertainties

- Physical constraints:

 Charge conservation
 \[\sum_i Z_i Y_i = Z_{CN} - Z_{LCP} \]

 Mass conservation
 \[\sum_i A_i Y_i = A_{CN} - \bar{v}_p(E) - A_{LCP} \]

 Individual charge conservation
 \[\sum_{Z=Z_1} Y = \sum_{Z=Z_2} Y \quad Z_1 + Z_2 = Z_{CN} \]

 Number of fission products
 \[\sum_i Y_i = 2 \]

 Asymmetry
 \[\sum_{A_i > \frac{A_{CN}-\bar{v}_p(E)}{2}} Y(A_i) = 1 \]
ENDF-6-format libraries (JEF)

- Independent Fission Yields
- Cumulative Fission Yields
 - Best estimate
 - Uncertainties

Physical constraints:

<table>
<thead>
<tr>
<th>Charge conservation</th>
<th>Number of fission products</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_i Z_i Y_i = Z_{CN} - Z_{LCP}$</td>
<td>$\sum_i Y_i = 2$</td>
</tr>
</tbody>
</table>

Mass conservation

$$\sum_i A_i Y_i = A_{CN} - \bar{\nu}_p(E) - A_{LCP}$$

Individual charge conservation

$$\sum_{Z=Z_1} Y = \sum_{Z=Z_2} Y \quad Z_1 + Z_2 = Z_{CN}$$
ENDF-6-format libraries (JEFF, ENDF/B, ...):

- Independent Fission Yields \([Y]\)
- Cumulative Fission Yields \([C]\)
 - Best estimate
 - Uncertainties
- Chain yields \([Ch]\)
 - Best estimate and uncertainties available in the literature (but not in the ENDF-6 library)

\[
Q Y = C
\]

\[
\sum_{A_i=A^*} Y(A_i) = Ch(A^*)
\]
Need for correlations

- Best-estimate values comply with the constraints
- Uncertainty data show discrepancies (S^TV_S)
- Example:
 - Calculation of burnup indicators
 \[N_{Nd^{148}}(t) \approx \frac{\sum_f \phi C_{Nd^{148}}}{\sigma_c^{Nd^{148}} \phi} \left(1 - e^{\sigma_c^{Nd^{148}} \phi t} \right) \]
 - Uncertainty on 148Nd cumulative fission yield
 \[QY = C \quad \Rightarrow \quad V_C = Q^t V_Y Q \]
- Inconsistency in the moment propagation formula

<table>
<thead>
<tr>
<th></th>
<th>JEFF-3.1.1</th>
<th>ENDF/B-VII.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library</td>
<td>0.7%</td>
<td>0.35%</td>
</tr>
<tr>
<td>Calculated</td>
<td>9.67%</td>
<td>21.42%</td>
</tr>
</tbody>
</table>

No correlation between fission yields
Discrepancy in the library (U235-th)

- Chain yields
- Cumulative yields
Covariance matrix generation

- Generalised least square approach

\[\chi^2 = (\vartheta - \vartheta_a)^+ V_a^{-1} (\vartheta - \vartheta_a) + (\eta - y)^+ V^{-1} (\eta - y_a) = \text{minimum} \]

- Updating procedure

PRIOR

\[\vartheta_a \]
\[V_a \]

CONSTRAINT

\[y = S \vartheta \]
\[V_y = SV \vartheta S^+ \]

OBSERVABLE

\[y_a = y(\vartheta_a) \]
\[V_y = SV_a S^+ \]

GLS METHOD

\[\vartheta_{\text{upd.}} = \vartheta_a + V_a S^+ (SV_a S^+ + V)^{-1} (\eta - y_a) \]
\[V_{\text{upd.}} = V_a + V_a S^+ (SV_a S^+ + V)^{-1} SV_a \]

NEW INFORMATION

\[y_{\text{new}} \]
\[V_{y,\text{new}} \]
Iterative updating process

\[y = Sv\theta \]

\[V_y = SV\theta S^+ \]

NEW INFORMATION

\[y_{\text{new}} \]

\[V_{y,\text{new}} \]

<table>
<thead>
<tr>
<th>Constraint</th>
<th>(y_{\text{new}})</th>
<th>(V_{y,\text{new}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent to Chain</td>
<td>Evaluations*</td>
<td>Evaluations*</td>
</tr>
<tr>
<td>Charge conservation</td>
<td>(Z_{CN} - Z_{LCP})</td>
<td>0.01%</td>
</tr>
<tr>
<td>Mass conservation</td>
<td>(A_{CN} - \bar{v}p(E) - A{LCP})</td>
<td>(\text{cov} \ \bar{v}_p(E))</td>
</tr>
<tr>
<td># of fission products</td>
<td>2</td>
<td>0.01%</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>1</td>
<td>0.01%</td>
</tr>
<tr>
<td>Ind. charge conserv.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Independent to Cum</td>
<td>Measurements?</td>
<td>Measurements?</td>
</tr>
</tbody>
</table>

IAEA, Handbook of Nuclear Data for Safeguards (2008)
Example of correlation matrix (U235-th)

- Independent yields
- Cumulative yields
Double effect of the updating process

Charge yields = \(\sum_{Z_i=Z^*} Y(Z_i) \)
Need for correlations

Example:

- Calculation of burnup indicators

\[N_{Nd^{148}}(t) \approx \frac{\Sigma_f \phi C_{Nd^{148}}}{\sigma_c^{Nd^{148}} \phi} \left(1 - e^{\sigma_c^{Nd^{148}} \phi t} \right) \]

- We introduced correlations amongst the independent fission yields
- Uncertainty on \(^{148}\text{Nd}\) cumulative fission yield

\[QY = C \quad \Rightarrow \quad V_C = Q^t V_Y Q \]

WITH CORRELATIONS

<table>
<thead>
<tr>
<th></th>
<th>JEFF-3.1.1</th>
<th>ENDF/B-VII.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library</td>
<td>0.7%</td>
<td>0.35%</td>
</tr>
<tr>
<td>Calculated</td>
<td>9.67%</td>
<td>21.42%</td>
</tr>
<tr>
<td>Updated</td>
<td>1.01%</td>
<td>0.35%</td>
</tr>
</tbody>
</table>

- Now the moment propagation formula is consistent
Discrepancy in the library (U235-th)

- **Chain yields**

- **Cumulative yields**
Discrepancy in the library (U235-th)

- Chain yields

- Cumulative yields
Summary

- Generation of correlations between fission yields
- Covariances represent physical constraints and evaluated uncertainties
- Correlations solve the discrepancies in the libraries
- We applied our covariance update procedure to **14 systems of the JEFF-3.1.1 library:**
 - Th-232 fast, 14-MeV
 - U-233 thermal, fast, 14-MeV
 - U-235 thermal, fast, 14-MeV
 - U-238 fast, 14-MeV
 - Pu-239 thermal, fast
 - Pu-241 thermal, fast
- Attempt to create inter-energy correlations using $\tilde{\nu}$ correlations
- **New ENDF-like format to store covariances** (mix MF=8, MF=33) MF=38 MT=454
Impact on FPDH calculations

![Graph showing impact on FPDH calculations](image)

- **VARIANCE**
- **CORRELATIONS**
REBUS: irradiation of samples (UO_2 fuel elements among them) in commercial PWR at Neckarwestheim NPP (Germany)
Gamma spectroscopy \rightarrow burn-up profile
Radiochemical analysis \rightarrow inventories of radionuclides

Impact on k_{eff}
Impact on nuclide density uncertainties
Conclusions

- Discrepancies in uncertainties
- Covariance generation by GLS method
- We generated covariance matrices for (almost) all the systems in JEFF-3.1.1
- Covariance matrices are stored in new format \(MF=38, MF=454 \)
- Fission yield covariance matrices help reduce the response uncertainties to acceptable values