Fission Product Yield Measurements from LANSCE & TUNL

Mark B. Chadwick (LANL), Anton Tonchev (LLNL), Fredrik Tovesson (LANL)
At higher energies the FPY for 147Nd turns over and decreases.

- The TUNL measurements at 14.8 MeV is in a very good agreement with LLNL value.
- Compared to the FPY at 4.6 MeV, the FPY has decreased by 37% at 14.8 MeV.
- Our new measurement helps resolve the long-standing discrepancy at 14.8 MeV!
The slope of 147Nd FPY is positive from 0.5 to 2.6 MeV in all three fissile actinides.

The slope of 147Nd FPY from 4.6 to 14.8 MeV is negative in all three fissile actinides.

Joint LLNL/LANL theoretical teams, using this data, are spearheading a renaissance in fission theory resulting in expanded capabilities to understand detailed fission properties.
Acknowledgements

TUNL
- Duke
 - C. Bhatia (PD)
 - M. Bhide (PD)
 - B. Fallin (GS)
 - C. Howell
 - W. Tornow

N.C. State Univ.
- M. Gooden (GS)
- J. Kelley

LLNL
- J. Becker
- R. Henderson
- J. Kenneally
- R. Macri
- D. Regnier
- C. Ryan
- S. Sheets

LANL
- C. Arnold
- E. Bond
- T. Bredeweg
- M. Chadwick
- M. Fowler
- W. Moody
- P. Mooler
- R. Rundberg
- G. Rusev
- A. Sierk
- A. Tonchev
Fission mass yields with SPIDER

- Spontaneous fission of Cf-252 is used as benchmark
- U-235 and Pu-239 for thermal neutrons can be compared to data from ILL, Grenoble
- Current mass resolution is 1.2 amu for light fragment group and 1.6 amu for heavy fragment group
- Lujan thermal measurement establishes accuracy
Total Kinetic Energy (TKE) results

- **$^{238}\text{U}(n, f)$**
 - Zöller et al. data for U-238 extends beyond 30 MeV
 - For U-235 no previous data above 9 MeV
 - For Pu-239 no data beyond 5 MeV

- **$^{235}\text{U}(n, f)$**
 - Madland evaluation is fit to experimental data
 - Not intended for extrapolation
 - ENDF values for 14 MeV never the less are extrapolations

- **$^{239}\text{Pu}(n, f)$**
 - Semi-empirical modeling by Lestone et al. in close agreement with new data
 - J.P. Lestone, T.T. Strother, Nuclear Data Sheets 118, 208 (2014)

- **ENDF** ^{239}Pu fission energy deposition needs to be increased by 2 MeV
Current status and future plans

- **Fission yields**
 - Thermal mass yields obtained for U-235, Pu-239
 - First test with fast neutrons completed
 - Remainder of FY2015
 - Complete data analysis
 - Improve mass resolution from 1.2 to 0.8%
 - FY2016
 - Measure fission fragment coincidence measurement on Pu-239
 - Make decision on SPIDER scale-up for fast neutron measurements at LANSCE/WNR

- **Total kinetic energy release**
 - Completed measurements for U-238, U-235, Pu-239
 - Remainder of FY2015
 - Publish U-238, U-235
 - FY2016
 - Publish Pu-239
 - Measure other isotopes?
 - Combine with fission neutron detection
Acknowledgements

■ Los Alamos National Laboratory
 • Postdocs: Krista Meierbachtol, Rhiannon Meharchand, Brett Manning, Charles Arnold
 • Students: Verena Kleinrath, Dan Shields, Dana Duke
 • Staff: Shea Mosby, Alexander Laptev, Justin Jorgenson, Morgan White, Todd Bredeweg, Arnie Sierk, Marian Jandel

■ University of New Mexico
 • Adam Hecht, Rich Blakeley, Lena Heffern, Drew Mader, Erin Dughie

■ Colorado School of Mines
 • Uwe Greife, Bill Moore